Contemporary statistical inference for infectious disease models using Stan.

[1]  Abhirup Mallik,et al.  Statistical Rethinking: A Bayesian Course with Examples in R and Stan , 2021, Technometrics.

[2]  Aki Vehtari,et al.  Yes, but Did It Work?: Evaluating Variational Inference , 2018, ICML.

[3]  Haoda Fu,et al.  Learning Optimal Personalized Treatment Rules in Consideration of Benefit and Risk: With an Application to Treating Type 2 Diabetes Patients With Insulin Therapies , 2018, Journal of the American Statistical Association.

[4]  Aki Vehtari,et al.  Visualization in Bayesian workflow , 2017, Journal of the Royal Statistical Society: Series A (Statistics in Society).

[5]  Ioannis Ntzoufras,et al.  Bayesian epidemic models for spatially aggregated count data , 2017, Statistics in medicine.

[6]  James T. Thorson,et al.  Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .

[7]  Marcus A. Brubaker,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[8]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[9]  Dustin Tran,et al.  Automatic Differentiation Variational Inference , 2016, J. Mach. Learn. Res..

[10]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[11]  M. Betancourt Identifying the Optimal Integration Time in Hamiltonian Monte Carlo , 2016, 1601.00225.

[12]  Richard McElreath,et al.  Statistical Rethinking: A Bayesian Course with Examples in R and Stan , 2015 .

[13]  Bob Carpenter,et al.  The Stan Math Library: Reverse-Mode Automatic Differentiation in C++ , 2015, ArXiv.

[14]  Anders Nielsen,et al.  TMB: Automatic Differentiation and Laplace Approximation , 2015, 1509.00660.

[15]  Andrew Gelman,et al.  Automatic Variational Inference in Stan , 2015, NIPS.

[16]  R. Bodík,et al.  Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE , 2015, 1505.05093.

[17]  M. Betancourt,et al.  Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.

[18]  M. Betancourt,et al.  The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.

[19]  M. Sayette,et al.  Of Course , 2014 .

[20]  Rob Deardon,et al.  Computational Statistics and Data Analysis Simulation-based Bayesian Inference for Epidemic Models , 2022 .

[21]  David J. Lunn,et al.  The BUGS Book: A Practical Introduction to Bayesian Analysis , 2013 .

[22]  W. John Edmunds,et al.  Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study , 2013, PLoS medicine.

[23]  David Spiegelhalter,et al.  The BUGS Book: A Practical Introduction to Bayesian Analysis , 2012 .

[24]  John Sibert,et al.  AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models , 2012, Optim. Methods Softw..

[25]  Michael Betancourt,et al.  The Geometry of Hamiltonian Monte Carlo , 2011, 1112.4118.

[26]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[27]  Radford M. Neal MCMC using Hamiltonian dynamics , 2012, 1206.1901.

[28]  Richard E. Turner,et al.  Two problems with variational expectation maximisation for time-series models , 2011 .

[29]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[30]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[31]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[32]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[33]  D. Fleming,et al.  Lessons from 40 years' surveillance of influenza in England and Wales , 2007, Epidemiology and Infection.

[34]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[35]  Johannes Müller,et al.  A course in mathematical biology - quantitative modeling with mathematical and computational methods , 2006, Mathematical modeling and computation.

[36]  Pejman Rohani,et al.  Appropriate Models for the Management of Infectious Diseases , 2005, PLoS medicine.

[37]  Joseph Gani,et al.  Stochastic Epidemic Models and Their Statistical Analysis , 2002 .

[38]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[39]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[40]  K. Dietz The estimation of the basic reproduction number for infectious diseases , 1993, Statistical methods in medical research.

[41]  S. I. Harik Infections of the Central Nervous System , 1992, Neurology.

[42]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[44]  Solomon Kullback,et al.  Information Theory and Statistics , 1960 .

[45]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[46]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[47]  M. Plummer JAGS Version 4.0.0 user manual , 2015 .

[48]  GelmanAndrew,et al.  The No-U-turn sampler , 2014 .

[49]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[50]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[51]  A. Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[52]  Christopher Bergevin,et al.  Brownian Motion , 2006, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[53]  M. A. Best Bayesian Approaches to Clinical Trials and Health‐Care Evaluation , 2005 .

[54]  S. Iacus,et al.  Fractals and Statistics: An R Package Called Ifs , 2003 .

[55]  Alan Carle,et al.  Automatic differentiation , 2003 .

[56]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[57]  G. Roberts,et al.  Bayesian inference for partially observed stochastic epidemics , 1999 .

[58]  伊理 正夫,et al.  Mathematical programming : recent developments and applications , 1989 .

[59]  A. Griewank,et al.  On Automatic Diierentiation 1 on Automatic Diierentiation , 1989 .

[60]  HighWire Press Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character , 1934 .