The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study

We present results of molecular dynamics simulations of linear polyelectrolytes in solution. The fundamental model for polyelectrolytes in solution is studied. Specifically, simulations are performed for multichain systems of a flexible chain model of charged polymers. The full Coulomb interactions of the monomers and counterions are treated explicitly. Experimental measurements of the osmotic pressure and the structure factor are reproduced. The simulations reveal a new picture of the chain structure based on calculations of the structure factor, persistence length, end‐to‐end distance, etc. We present a detailed discussion of the chain structure and a comparison with present theories. In contrast to the predicted dilute limit of rodlike chains, we find that the chains have significant bending at very low densities. Furthermore, the chains contract significantly before they overlap. We also show that counterion condensation dramatically alters the chain structure.

[1]  G. Jannink Structure factors of polyelectrolyte solutions revealed by neutron scattering , 1986 .

[2]  E. Amis,et al.  Dynamics of moderately concentrated salt‐free polyelectrolyte solutions: Molecular weight dependence , 1992 .

[3]  Kurt Kremer,et al.  Dynamics of polymer chains confined into tubes: Scaling theory and Monte Carlo simulations , 1984 .

[4]  M. Hagenbüchle,et al.  Static light scattering and electric birefringence experiments on saltfree solutions of poly(styrenesulfonate) , 1994 .

[5]  T. Creamer,et al.  Monte Carlo simulations of polyelectrolytes: Isolated fully ionized chains with screened Coulomb interactions , 1988 .

[6]  M. Antonietti,et al.  Static and dynamic light scattering by aqueous polyelectrolyte solutions: effect of molecular weight, charge density and added salt , 1990 .

[7]  F. Mantegazza,et al.  Transient Electric Birefringence Measurement of the Persistence Length of Sodium Polystyrene Sulfonate , 1991 .

[8]  D. J. Adams,et al.  Taming the Edwald sum in the computer simulation of charged systems , 1987 .

[9]  V. Bloomfield,et al.  Small-angle x-ray scattering of semidilute rodlike DNA solutions: polyelectrolyte behavior , 1991 .

[10]  M. Record,et al.  Polyelectrolyte Theories and their Applications to DNA , 1982 .

[11]  M. Lax,et al.  Monte Carlo study of polyelectrolyte behavior. I. Technique , 1981 .

[12]  J. Skolnick,et al.  Charge Interactions in Cylindrical Polyelectrolytes , 1978 .

[13]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[14]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[15]  J. Victor Poisson-Boltzmann integral equation for polyelectrolyte solutions , 1991 .

[16]  M. Mandel,et al.  The influence of chain-flexibility on the colligative properties of polyelectrolyte solutions , 1978 .

[17]  B. Zimm,et al.  Distribution of counterions around a cylindrical polyelectrolyte and manning's condensation theory , 1984 .

[18]  K. Kremer,et al.  Form factor of salt-free linear polyelectrolytes , 1993 .

[19]  M. Tricot Comparison of experimental and theoretical persistence length of some polyelectrolytes at various ionic strengths , 1984 .

[20]  W. Reed,et al.  Monte Carlo electrostatic persistence lengths compared with experiment and theory , 1991 .

[21]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[22]  M. Danino,et al.  The average number of kinks of a short polyelectrolyte chain: A Monte Carlo study , 1992 .

[23]  V. Bloomfield,et al.  Osmotic pressure of polyelectrolytes without added salt , 1990 .

[24]  Rosa María Velasco,et al.  Remarks on polyelectrolyte conformation , 1976 .

[25]  M. Stevens,et al.  Density Functional Theory of Ionic Screening: When Do Like Charges Attract? , 1990 .

[26]  W. Reed,et al.  Monte Carlo test of electrostatic persistence length for short polymers , 1990 .

[27]  S. Lifson,et al.  The electrostatic free energy of polyelectrolyte solutions. II. Fully stretched macromolecules , 1954 .

[28]  T. Kanaya,et al.  Phase diagram of polyelectrolyte solutions , 1988 .

[29]  Robijn Bruinsma,et al.  Soft order in physical systems , 1994 .

[30]  B. Jönsson,et al.  Monte Carlo and mean field studies of a polyelectrolyte in salt solution , 1991 .

[31]  R. M. Velasco,et al.  Conformation properties of one isolated polyelectrolyte chain in D dimensions , 1977 .

[32]  Kenneth A. Dawson,et al.  A mean field approach to the structure of polyelectrolytes , 1993 .

[33]  M. Mézard,et al.  Polymers with long-range self-repulsion: a variational approach , 1991 .

[34]  D. Bratko,et al.  Distribution of counterions in the double layer around a cylindrical polyion , 1982 .

[35]  K. Schmitz Macro-ion Characterization: From Dilute Solutions to Complex Fluids , 1993 .

[36]  T. Witten,et al.  Structure and viscosity of interpenetrating polyelectrolyte chains , 1987 .

[37]  A. Katchalsky,et al.  The electrostatic free energy of polyelectrolyte solutions. I. Randomly kinked macromolecules , 1953 .

[38]  Donald A. McQuarrie,et al.  A theory of cylindrical polyelectrolyte solutions , 1985 .

[39]  Kremer,et al.  Structure of salt-free linear polyelectrolytes. , 1993, Physical review letters.

[40]  J. Barrat,et al.  Numerical study of a charged bead-spring chain , 1993 .

[41]  Kremer,et al.  Microscopic verification of dynamic scaling in dilute polymer solutions: A molecular-dynamics simulation. , 1991, Physical review letters.

[42]  G. S. Manning The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides , 1978, Quarterly Reviews of Biophysics.

[43]  Vilgis,et al.  Mean-field theory of concentrated polyelectrolyte solutions: Statics and dynamics. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[44]  B. Zimm,et al.  Monte Carlo determination of the distribution of ions about a cylindrical polyelectrolyte , 1984, Biopolymers.

[45]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[46]  J. Skolnick,et al.  Electrostatic Persistence Length of a Wormlike Polyelectrolyte , 1977 .

[47]  P. Chaikin,et al.  Charge renormalization, osmotic pressure, and bulk modulus of colloidal crystals: Theory , 1984 .

[48]  J. Skolnick,et al.  Polyelectrolyte Excluded Volume Paradox , 1978 .

[49]  T. Odijk Possible Scaling Relations for Semidilute Polyelectrolyte Solutions , 1979 .

[50]  M. Fixman The flexibility of polyelectrolyte molecules , 1982 .

[51]  P. Gennes,et al.  Correlations and dynamics of polyelectrolyte solutions , 1980 .

[52]  M. E. Cates The anomalous Kerr effect: implications for polyelectrolyte structure , 1992 .

[53]  T. Odijk Polyelectrolytes near the rod limit , 1977 .

[54]  Theo Odijk,et al.  Electrostatic persistence length and its relation to a unified theory of polyelectrolytes in solution , 1978 .

[55]  S. Carnie,et al.  Monte Carlo simulations of partially ionized polyelectrolytes: Shape and distribution functions , 1989 .

[56]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[57]  J. Dalbiez,et al.  Light scattering by dilute solutions of salt-free polyelectrolytes , 1984 .

[58]  A. Khokhlov On the collapse of weakly charged polyelectrolytes , 1980 .

[59]  P. Gennes,et al.  Small angle neutron scattering by semi-dilute solutions of polyelectrolyte , 1979 .

[60]  M. Antonietti,et al.  Experimental and theoretical investigation of the electrostatic persistence length of flexible polyelectrolytes at various ionic strengths , 1992 .

[61]  J. Valleau Flexible polyelectrolyte in ionic solution: A Monte Carlo study , 1989 .

[62]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[63]  R. Oberthür,et al.  Characteristic lengths and the structure of salt free polyelectrolyte solutions. A small angle neutron scattering study , 1985 .