Generation and collection of photocarriers in dilute nitride GaInNAsSb solar cells

[1]  W. Fan,et al.  Rapid thermal annealing of GaNxAs1-x grown by radio-frequency plasma assisted molecular beam epitaxy and its effect on photoluminescence , 2002 .

[2]  James S. Harris,et al.  Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal , 2001 .

[3]  S. Zhang,et al.  Post-growth and in situ annealing on GaInNAs(Sb) and their application in 1.55 µm lasers , 2006 .

[4]  Z. R. Wasilewski,et al.  Molecular beam epitaxy growth of 1.55 μm GaInNAs(Sb) double quantum wells with bright and narrow photoluminescence , 2006 .

[5]  C. Tu,et al.  Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy , 2000 .

[6]  James S. Harris,et al.  Overannealing effects in GaInNAs"Sb… alloys and their importance to laser applications , 2006 .

[7]  Y. Okada,et al.  Effect of antimony on uniform incorporation of nitrogen atoms in GaInNAs films for solar cell application , 2013 .

[8]  A. Zunger,et al.  Spatial correlations in GaInAsN alloys and their effects on band-gap enhancement and electron localization. , 2001, Physical review letters.

[9]  A. A. Allerman,et al.  Time-resolved photoluminescence studies of InxGa1−xAs1−yNy , 2000 .

[10]  Sarah R. Kurtz,et al.  1-eV solar cells with GaInNAs active layer , 1998 .

[11]  S. Chua,et al.  Annealing behavior of N-bonding configurations in GaN0.023As0.977 ternary alloy grown on GaAs (001) substrate by molecular beam epitaxy , 2006 .

[12]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[13]  James S. Harris,et al.  The opportunities, successes and challenges for GaInNAsSb , 2005 .

[14]  K. Uno,et al.  Thermal annealing effects and local atomic configurations in GaInNAs thin films , 2005 .

[15]  Frank Dimroth,et al.  Comparison of dilute nitride growth on a single- and 8×4-inch multiwafer MOVPE system for solar cell applications , 2004 .

[16]  T. Kitatani,et al.  In situ Annealing of GaInNAs up to 600°C , 2001 .

[17]  H. F. Liu,et al.  Mechanism of photoluminescence blue shift in InGaAsN/GaAs quantum wells during annealing , 2005 .

[18]  J. Chauveau,et al.  Annealing effects on the crystal structure of GaInNAs quantum wells with large In and N content grown by molecular beam epitaxy , 2003 .

[19]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[20]  A. Janotti,et al.  Effects of hydrogen on the electronic properties of dilute GaAsN alloys. , 2002, Physical review letters.

[21]  Xiaodong Yang,et al.  InGaAsNSb/GaAs quantum wells for 1.55 μm lasers grown by molecular-beam epitaxy , 2001 .

[22]  Y. Okada,et al.  Effect of antimony on the deep-level traps in GaInNAsSb thin films , 2014 .

[23]  S. Kurtz,et al.  Correlation of nitrogen related traps in InGaAsN with solar cell properties , 2007 .

[24]  James S. Harris,et al.  Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy , 2007 .

[25]  Homan Yuen,et al.  43.5% efficient lattice matched solar cells , 2011, Optics + Photonics for Sustainable Energy.

[26]  M. Pessa,et al.  Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy , 2001 .

[27]  V. Grillo,et al.  Effect of annealing on the In and N distribution in InGaAsN quantum wells , 2002 .

[28]  V. Polojärvi,et al.  Dynamics of time-resolved photoluminescence in GaInNAs and GaNAsSb solar cells , 2014, Nanoscale Research Letters.

[29]  J. Chauveau,et al.  Nanoscale analysis of the In and N spatial redistributions upon annealing of GaInNAs quantum wells , 2004 .

[30]  Daniel J. Friedman,et al.  Progress and challenges for next-generation high-efficiency multijunction solar cells , 2010 .

[31]  Daniel J. Friedman,et al.  Photocurrent of 1 eV GaInNAs lattice-matched to GaAs , 1998 .

[32]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[33]  Enhanced-depletion-width GaInNAs solar cells grown by molecular-beam epitaxy , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[34]  Y. Okada,et al.  Fabrication of GaInNAs-based Solar Cells for Application to Multi-junction Tandem Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[35]  S. Kurtz,et al.  Interactions between nitrogen, hydrogen, and gallium vacancies inGaAs1−xNxalloys , 2003 .

[36]  J. Harris,et al.  Nearest-neighbor configuration in (GaIn)(NAs) probed by x-ray absorption spectroscopy. , 2003, Physical review letters.

[37]  Eric Daniel Jones,et al.  InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs , 1999 .

[38]  Y. Okada,et al.  Improvement of GaInNAsSb films fabricated by atomic hydrogen-assisted molecular beam epitaxy , 2009 .