Comparative transcriptomic analysis provides insights into transcription mechanisms of Vibrio parahaemolyticus T3SS during interaction with HeLa cells

[1]  Yongjie Liu,et al.  VscF in T3SS1 Helps to Translocate VPA0226 in Vibrio parahaemolyticus , 2021, Frontiers in Cellular and Infection Microbiology.

[2]  Chad S. Hunter,et al.  The Ldb1 Transcriptional Co‐Regulator is Required for Establishment, Development, and Survival of the Pancreatic Endocrine Lineage , 2020, The FASEB Journal.

[3]  S. Coker,et al.  Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy , 2020, PLoS biology.

[4]  N. Thomson,et al.  Type III secretion system confers enhanced virulence in clinical non-O1/non-O139 Vibrio cholerae. , 2019, Microbial pathogenesis.

[5]  R. D. De Guzman,et al.  The type III secretion system needle, tip, and translocon , 2019, Protein science : a publication of the Protein Society.

[6]  I. Autenrieth,et al.  Bacterial adhesion and host cell factors leading to effector protein injection by type III secretion system. , 2019, International journal of medical microbiology : IJMM.

[7]  H. Wolf‐Watz,et al.  A bacterial secreted translocator hijacks riboregulators to control type III secretion in response to host cell contact , 2019, PLoS pathogens.

[8]  H. Saito,et al.  Biophysical Mechanism of Protein Export by Bacterial Type III Secretion System. , 2019, Chemical & pharmaceutical bulletin.

[9]  Ruifu Yang,et al.  QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence , 2019, Environmental microbiology.

[10]  S. Tungpradabkul,et al.  Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. , 2019, Journal of proteomics.

[11]  S. Jung A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus associated with cross-contamination from squid in Korea , 2018, Epidemiology and health.

[12]  D. Rees,et al.  Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter , 2018, Proceedings of the National Academy of Sciences.

[13]  Carla C. C. R. de Carvalho,et al.  The Various Roles of Fatty Acids , 2018, Molecules.

[14]  Ruifu Yang,et al.  Autoregulation of ToxR and Its Regulatory Actions on Major Virulence Gene Loci in Vibrio parahaemolyticus , 2018, Front. Cell. Infect. Microbiol..

[15]  P. Markham,et al.  Metabolite profiling of Mycoplasma gallisepticum mutants, combined with bioinformatic analysis, can reveal the likely functions of virulence-associated genes. , 2018, Veterinary microbiology.

[16]  J. Galán,et al.  A protein secreted by the Salmonella type III secretion system controls needle filament assembly , 2018, eLife.

[17]  W. Wholey,et al.  ABC transporter content diversity in Streptococcus pneumoniae impacts competence regulation and bacteriocin production , 2018, Proceedings of the National Academy of Sciences.

[18]  Josephine R. Chandler,et al.  Bacterial Quorum Sensing and Microbial Community Interactions , 2018, mBio.

[19]  Daniel M. Cornforth,et al.  Pseudomonas aeruginosa transcriptome during human infection , 2018, Proceedings of the National Academy of Sciences.

[20]  Wei Zhang,et al.  A two-component signal transduction system contributes to the virulence of Riemerella anatipestifer , 2018, Journal of veterinary science.

[21]  YoSon Park,et al.  The YscE/YscG chaperone and YscF N-terminal sequences target YscF to the Yersinia pestis type III secretion apparatus. , 2018, Microbiology.

[22]  T. Krell,et al.  The effect of bacterial chemotaxis on host infection and pathogenicity. , 2018, FEMS microbiology reviews.

[23]  K. Nagy,et al.  The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2016 , 2017, EFSA journal. European Food Safety Authority.

[24]  Umaporn Khimmakthong,et al.  The spread of Vibrio parahaemolyticus in tissues of the Pacific white shrimp Litopenaeus vannamei analyzed by PCR and histopathology. , 2017, Microbial pathogenesis.

[25]  Stephen P. Diggle,et al.  Progress in and promise of bacterial quorum sensing research , 2017, Nature.

[26]  Dongsheng Zhou,et al.  Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus , 2017, Oncotarget.

[27]  J. Krupp,et al.  Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors , 2017, Nature Communications.

[28]  B. Finlay,et al.  Assembly, structure, function and regulation of type III secretion systems , 2017, Nature Reviews Microbiology.

[29]  Dongsheng Zhou,et al.  Transcriptional regulation of cpsQ‐mfpABC and mfpABC by CalR in Vibrio parahaemolyticus , 2017, MicrobiologyOpen.

[30]  M. Wolf-Watz,et al.  Characterization of the Ruler Protein Interaction Interface on the Substrate Specificity Switch Protein in the Yersinia Type III Secretion System* , 2016, The Journal of Biological Chemistry.

[31]  B. Ni,et al.  Transcription of exsD is repressed directly by H-NS in Vibrio parahaemolyticus. , 2016, Microbial pathogenesis.

[32]  N. Grishin,et al.  Bile salt receptor complex activates a pathogenic type III secretion system , 2016, eLife.

[33]  Samuel I. Miller,et al.  Salmonellae interactions with host processes , 2015, Nature Reviews Microbiology.

[34]  T. Iida,et al.  Regulation of Vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton , 2015, Cellular microbiology.

[35]  K. Orth,et al.  Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella and Vibrio , 2015, Cellular microbiology.

[36]  H. Mou,et al.  Fatty acid profiles of Vibrio parahaemolyticus and its changes with environment , 2015, Journal of basic microbiology.

[37]  Ruifu Yang,et al.  H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus , 2014, Front. Microbiol..

[38]  Douglas R. Call,et al.  Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions , 2014, Front. Cell. Infect. Microbiol..

[39]  A. Masoudi,et al.  Chasing Acyl-Carrier-Protein Through a Catalytic Cycle of Lipid A Production , 2013, Nature.

[40]  G. Plano,et al.  The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses , 2013, Immunologic Research.

[41]  E. Bouveret,et al.  The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. , 2012, Methods.

[42]  K. Mawatari,et al.  VopB1 and VopD1 are essential for translocation of type III secretion system 1 effectors of Vibrio parahaemolyticus. , 2012, Canadian journal of microbiology.

[43]  D. Holden,et al.  Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. , 2012, Microbiology.

[44]  Pui Sai Lau,et al.  Characterization of DalS, an ATP-binding Cassette Transporter for d-Alanine, and Its Role in Pathogenesis in Salmonella enterica* , 2012, The Journal of Biological Chemistry.

[45]  W. B. Whitaker,et al.  The Vibrio parahaemolyticus ToxRS Regulator Is Required for Stress Tolerance and Colonization in a Novel Orogastric Streptomycin-Induced Adult Murine Model , 2012, Infection and Immunity.

[46]  C. McDevitt,et al.  The role of ATP-binding cassette transporters in bacterial pathogenicity , 2012, Protoplasma.

[47]  K. Orth,et al.  Vibrio parahaemolyticus cell biology and pathogenicity determinants. , 2011, Microbes and infection.

[48]  G. Cornelis,et al.  Translocators YopB and YopD from Yersinia enterocolitica Form a Multimeric Integral Membrane Complex in Eukaryotic Cell Membranes , 2011, Journal of bacteriology.

[49]  A. Dessen,et al.  Membrane targeting and pore formation by the type III secretion system translocon , 2011, The FEBS journal.

[50]  Keiichi Namba,et al.  Bacterial nanomachines: the flagellum and type III injectisome. , 2010, Cold Spring Harbor perspectives in biology.

[51]  T. Honda,et al.  Bile Acid-Induced Virulence Gene Expression of Vibrio parahaemolyticus Reveals a Novel Therapeutic Potential for Bile Acid Sequestrants , 2010, PloS one.

[52]  A. Blocker,et al.  The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors , 2010, Molecular microbiology.

[53]  K. Orth,et al.  A Vibrio Effector Protein Is an Inositol Phosphatase and Disrupts Host Cell Membrane Integrity , 2010, Science.

[54]  L. McCarter,et al.  Calcium and Iron Regulate Swarming and Type III Secretion in Vibrio parahaemolyticus , 2010, Journal of bacteriology.

[55]  M. dal Peraro,et al.  Length control of the injectisome needle requires only one molecule of Yop secretion protein P (YscP) , 2010, Proceedings of the National Academy of Sciences.

[56]  A. Dessen,et al.  Cochaperone Interactions in Export of the Type III Needle Component PscF of Pseudomonas aeruginosa , 2010, Journal of bacteriology.

[57]  T. Honda,et al.  Two Regulators of Vibrio parahaemolyticus Play Important Roles in Enterotoxicity by Controlling the Expression of Genes in the Vp-PAI Region , 2010, PloS one.

[58]  J. Enninga,et al.  Imaging the assembly, structure and activity of type III secretion systems , 2009, Cellular microbiology.

[59]  J. A. Ibarra,et al.  Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival , 2009, Cellular microbiology.

[60]  Lisa N Kinch,et al.  AMPylation of Rho GTPases by Vibrio VopS Disrupts Effector Binding and Downstream Signaling , 2009, Science.

[61]  P. Roversi,et al.  What's the point of the type III secretion system needle? , 2008, Proceedings of the National Academy of Sciences.

[62]  J. Tropea,et al.  Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG , 2008, Journal of molecular biology.

[63]  Yi-Cheng Su,et al.  Vibrio parahaemolyticus: a concern of seafood safety. , 2007, Food microbiology.

[64]  Y. Takeda,et al.  Global Dissemination of Vibrio parahaemolyticus Serotype O3:K6 and Its Serovariants , 2007, Clinical Microbiology Reviews.

[65]  G. Cornelis,et al.  The type III secretion injectisome , 2006, Nature Reviews Microbiology.

[66]  Hans Wolf-Watz,et al.  Protein delivery into eukaryotic cells by type III secretion machines , 2006, Nature.

[67]  F. Cordes,et al.  Molecular model of a type III secretion system needle: Implications for host-cell sensing , 2006, Proceedings of the National Academy of Sciences.

[68]  J. Garin,et al.  PscF is a major component of the Pseudomonas aeruginosa type III secretion needle. , 2005, FEMS microbiology letters.

[69]  G. Cornelis,et al.  Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity , 2005, Molecular microbiology.

[70]  M. W. Jackson,et al.  The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion , 2005, Molecular microbiology.

[71]  D. Ladant,et al.  Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis , 2005, Journal of bacteriology.

[72]  T. Honda,et al.  Functional Characterization of Two Type III Secretion Systems of Vibrio parahaemolyticus , 2004, Infection and Immunity.

[73]  T. Honda,et al.  Cytotoxicity and Enterotoxicity of the Thermostable Direct Hemolysin‐Deletion Mutants of Vibrio parahaemolyticus , 2004, Microbiology and immunology.

[74]  F. Cordes,et al.  Helical Structure of the Needle of the Type III Secretion System of Shigella flexneri * , 2003, The Journal of Biological Chemistry.

[75]  Masahira Hattori,et al.  Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae , 2003, The Lancet.

[76]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[77]  E. Hoiczyk,et al.  Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  P. Sansonetti,et al.  Structure and composition of the Shigella flexneri‘needle complex’, a part of its type III secreton , 2001, Molecular microbiology.

[79]  Y. Yamaichi,et al.  Genetic Characterization of DNA Region Containing the trh and ure Genes of Vibrio parahaemolyticus , 2000, Infection and Immunity.

[80]  T. Kimbrough,et al.  Contribution of Salmonella typhimurium type III secretion components to needle complex formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Galán,et al.  Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  C. Sasakawa,et al.  Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors , 2000, The EMBO journal.

[83]  S. Altekruse,et al.  Vibrio parahaemolyticus infections in the United States, 1973-1998. , 2000, The Journal of infectious diseases.

[84]  D. Ladant,et al.  A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. , 2000, Methods in enzymology.

[85]  D. Ladant,et al.  A bacterial two-hybrid system based on a reconstituted signal transduction pathway. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. P. Gallagher,et al.  Molecular characterization of the oligopeptide permease of Salmonella typhimurium. , 1987, Journal of molecular biology.

[87]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .