Response classification of simple polycrystalline microstructures
暂无分享,去创建一个
[1] Gerd Heber,et al. Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear , 2005 .
[2] Sanjay R. Arwade,et al. Random Composites Characterization Using a Classifier Model , 2007 .
[3] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[4] I. Sobol,et al. Global sensitivity indices for nonlinear mathematical models. Review , 2005 .
[5] T. Iwakuma,et al. Finite elastic-plastic deformation of polycrystalline metals , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[6] Carlos Armando Duarte,et al. A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries , 2006 .
[7] M. Rashid. Texture evolution and plastic response of two-dimensional polycrystals , 1992 .
[8] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[9] Gorti B. Sarma,et al. Texture predictions using a polycrystal plasticity model incorporating neighbor interactions , 1996 .
[10] Mircea Grigoriu,et al. PROBABILISTIC MODEL FOR POLYCRYSTALLINE MICROSTRUCTURES WITH APPLICATION TO INTERGRANULAR FRACTURE , 2004 .
[11] Bruno Sudret,et al. Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..
[12] P. Dawson,et al. An analysis of texture and plastic spin for planar polycrystals , 1993 .
[13] P. Dawson,et al. Modeling crystallographic texture evolution with finite elements over neo-Eulerian orientation spaces , 1998 .
[14] R. Asaro,et al. Geometrical effects in the inhomogeneous deformation of ductile single crystals , 1979 .
[15] J. D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[16] T. C. T. Ting,et al. Anisotropic Elasticity: Theory and Applications , 1996 .