Birational geometry of Fano direct products

We prove the birational superrigidity of direct products of primitive Fano varieties of the following two types: either is a general hypersurface of degree?, , or is a general double space of index?1, . In particular, every structure of a rationally connected fibre space on? is given by the projection onto a direct factor. The proof is based on the connectedness principle of Shokurov and Koll?r and the technique of hypertangent divisors.

[1]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[2]  A V Pukhlikov Birational geometry of Fano direct products , 2005 .

[3]  A. Pukhlikov Birationally rigid varieties with a pencil of Fano double covers. I , 2003, math/0510168.

[4]  A. Pukhlikov Birationally rigid iterated Fano double covers , 2003, math/0310268.

[5]  A. Pukhlikov Birationally rigid Fano hypersurfaces with isolated singularities , 2001, math/0106110.

[6]  Игорь Вадимович Соболев,et al.  Бирациональные автоморфизмы одного класса многообразий, расслоенных на кубические поверхности@@@Birational automorphisms of a class of varieties fibred into cubic surfaces , 2002 .

[7]  Александр Валентинович Пухликов,et al.  Бирационально жесткие гиперповерхности Фано@@@Birationally rigid Fano hypersurfaces , 2002 .

[8]  I. V. Sobolev On a series of birationally rigid varieties with a pencil of Fano hypersurfaces , 2001 .

[9]  Joe W. Harris,et al.  Families of rationally connected varieties , 2001, math/0109220.

[10]  Aleksandr V. Pukhlikov,et al.  Birationally rigid Fano complete intersections , 2001 .

[11]  Игорь Вадимович Соболев,et al.  Об одной серии бирационально жестких многообразий с пучком гиперповерхностей Фано@@@On a series of birationally rigid varieties with a pencil of Fano hypersurfaces , 2001 .

[12]  A. Pukhlikov Birationally rigid Fano fibrations , 2000 .

[13]  Михаил Михайлович Гриненко,et al.  Бирациональные свойства пучков поверхностей дель Пеццо степеней 1 и 2. II@@@Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II , 2000 .

[14]  Александр Валентинович Пухликов,et al.  Бирационально жесткие двойные гиперповерхности Фано@@@Birationally rigid Fano double hypersurfaces , 2000 .

[15]  Александр Валентинович Пухликов,et al.  Бирационально жесткие расслоения Фано@@@Birationally rigid Fano fibrations , 2000 .

[16]  Miles Reid,et al.  Explicit Birational Geometry of 3-Folds: Fano 3-fold hypersurfaces , 2000 .

[17]  A. Corti Explicit Birational Geometry of 3-Folds: Singularities of linear systems and 3-fold birational geometry , 2000 .

[18]  S. Mardešić The vanishing theorems , 2000 .

[19]  A. Pukhlikov Explicit Birational Geometry of 3-Folds: Essentials of the method of maximal singularities , 2000 .

[20]  A. Pukhlikov Birational automorphisms of Fano hypersurfaces , 1998 .

[21]  M. Grinenko Birational automorphisms of a three-dimensional double cone , 1998, math/9808132.

[22]  A. Pukhlikov Essentials of the method of maximal singularities , 1998, math/9806138.

[23]  Александр Валентинович Пухликов,et al.  Бирациональные автоморфизмы трехмерных алгебраических многообразий с пучком поверхностей дель Пеццо@@@Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces , 1998 .

[24]  J. Kollár Flips and Abundance for Algebraic Threefolds , 1992 .

[25]  A. Pukhlikov Birational Automorphisms of a Double Space and Double Quadric , 1989 .

[26]  A. Pukhlikov BIRATIONAL AUTOMORPHISMS OF A THREE-DIMENSIONAL QUARTIC WITH A QUADRATIC SINGULARITY , 1989 .

[27]  A. Pukhlikov Birational isomorphisms of four-dimensional quintics , 1987 .

[28]  V. G. Sarkisov ON CONIC BUNDLE STRUCTURES , 1983 .

[29]  Y. Kawamata A generalization of Kodaira-Ramanujam's vanishing theorem , 1982 .

[30]  V. G. Sarkisov BIRATIONAL AUTOMORPHISMS OF CONIC BUNDLES , 1981 .

[31]  V. A. Iskovskikh Birational automorphisms of three-dimensional algebraic varieties , 1980 .

[32]  I︠u︡. I. Manin,et al.  Cubic forms; algebra, geometry, arithmetic , 1974 .

[33]  Ju. Manin,et al.  THREE-DIMENSIONAL QUARTICS AND COUNTEREXAMPLES TO THE LÜROTH PROBLEM , 1971 .

[34]  Ju. Manin,et al.  RATIONAL SURFACES OVER PERFECT FIELDS. II , 1967 .

[35]  Юрий Иванович Манин Рациональные поверхности над совершенными полями. II , 1967 .

[36]  Max Noether,et al.  Ueber Flächen, welche Schaaren rationaler Curven besitzen , 1870 .