Evidence for quasar fast outflows being accelerated at the scale of tens of parsecs

Quasar outflows may play a crucial role in regulating the host galaxy, although the spatial scale of quasar outflows remain a major enigma, with their acceleration mechanism poorly understood. The kinematic information of outflow is the key to understanding its origin and acceleration mechanism. Here, we report the galactocentric distances of different outflow components for both a sample and an individual quasar. We find that the outflow distance increases with velocity, with a typical value from several parsecs to more than one hundred parsecs, providing direct evidence for an acceleration happening at a scale of the order of 10 parsecs. These outflows carry ∼1% of the total quasar energy, while their kinematics are consistent with a dust-driven model with a launching radius comparable to the scale of a dusty torus, indicating that the coupling between dust and quasar radiation may produce powerful feedback that is crucial to galaxy evolution.

[1]  Guobin Mou,et al.  A Sharp Rise in the Detection Rate of Broad Absorption Line Variations in a Quasar SDSS J141955.26+522741.1 , 2020, 2012.07254.

[2]  A. Bolatto,et al.  Cool outflows in galaxies and their implications , 2020, The Astronomy and Astrophysics Review.

[3]  Wei-Jian Lu,et al.  Correlations between the Variation of the Ionizing Continuum and Broad Absorption Lines in Individual Quasars , 2019, The Astrophysical Journal.

[4]  P. Hall,et al.  Variability of Low-ionization Broad Absorption-line Quasars Based on Multi-epoch Spectra from the Sloan Digital Sky Survey , 2019, The Astrophysical Journal Supplement Series.

[5]  Jun Xu,et al.  The properties of broad absorption line outflows based on a large sample of quasars , 2018, Nature Astronomy.

[6]  D. Rupke A Review of Recent Observations of Galactic Winds Driven by Star Formation , 2018, Galaxies.

[7]  G. Richards,et al.  The z = 0.54 LoBAL Quasar SDSS J085053.12+445122.5. II. The Nature of Partial Covering in the Broad-absorption-line Outflow , 2018, The Astrophysical Journal.

[8]  P. Hall,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Systematic Investigations of Short-timescale C IV Broad Absorption Line Variability , 2018, The Astrophysical Journal.

[9]  I. Pâris,et al.  On the structure and energetics of quasar broad absorption-line outflows , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  G. Richards,et al.  The z = 0.54 LoBAL Quasar SDSS J085053.12+445122.5. I. Spectral Synthesis Analysis Reveals a Massive Outflow , 2018, The Astrophysical Journal.

[11]  C. Benn,et al.  Evidence that 50% of BALQSO Outflows Are Situated at Least 100 pc from the Central Source , 2018, 1805.01543.

[12]  G. Cresci,et al.  The largely unconstrained multiphase nature of outflows in AGN host galaxies , 2018, 1802.10308.

[13]  T. Costa,et al.  AGN outflows and feedback twenty years on , 2018, Nature Astronomy.

[14]  Junxian Wang,et al.  How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency? , 2017, 1709.05271.

[15]  A. Myers,et al.  The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy , 2017, 1706.04240.

[16]  F. P. Keenan,et al.  The 2017 release of CLOUDY , 2017, 1705.10877.

[17]  P. Hall,et al.  Broad absorption line disappearance and emergence using multiple-epoch spectroscopy from the Sloan Digital Sky Survey , 2017, 1705.03019.

[18]  P. Jiang,et al.  Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052 , 2017, 1703.02686.

[19]  L. Dou,et al.  Variation of Ionizing Continuum: The Main Driver of Broad Absorption Line Variability , 2017, 1703.00716.

[20]  Japneet Singh,et al.  Attenuation from the optical to the extreme ultraviolet by dust associated with broad absorption line quasars: the driving force for outflows , 2016, 1611.03733.

[21]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release , 2016, 1608.06483.

[22]  P. Hall,et al.  C IV BROAD ABSORPTION LINE ACCELERATION IN SLOAN DIGITAL SKY SURVEY QUASARS , 2016, 1604.07410.

[23]  F. G. Saturni,et al.  A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255 II. Emission- and absorption-line variability time lags , 2015, 1512.03195.

[24]  G. Ferland,et al.  EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY , 2015, 1510.04945.

[25]  M. Eracleous,et al.  On the covering fraction variability in an EUV mini-BAL outflow from PG 1206+459 , 2015, 1509.07850.

[26]  H. Mason,et al.  CHIANTI - An atomic database for Emission Lines. Version 8 , 2015, 1508.07631.

[27]  S. Gallagher,et al.  Investigating the structure of the windy torus in quasars , 2015, 1505.04219.

[28]  A. Fabian,et al.  AGN feedback: galactic-scale outflows driven by radiation pressure on dust , 2015, 1504.07393.

[29]  W. M. Wood-Vasey,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY , 2015, 1503.03076.

[30]  G. Richards,et al.  MINING FOR DUST IN TYPE 1 QUASARS , 2014, 1412.7039.

[31]  W. M. Wood-Vasey,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW , 2014, 1408.5970.

[32]  T. Barlow,et al.  A variable P v broad absorption line and quasar outflow energetics , 2014, 1407.7532.

[33]  A. Myers,et al.  THE DEPENDENCE OF C iv BROAD ABSORPTION LINE PROPERTIES ON ACCOMPANYING Si iv AND Al iii ABSORPTION: RELATING QUASAR-WIND IONIZATION LEVELS, KINEMATICS, AND COLUMN DENSITIES , 2014, 1407.2250.

[34]  Y. Yoshii,et al.  REVERBERATION MEASUREMENTS OF THE INNER RADIUS OF THE DUST TORUS IN 17 SEYFERT GALAXIES , 2014, 1406.2078.

[35]  P. Jiang,et al.  OUTFLOW AND HOT DUST EMISSION IN BROAD ABSORPTION LINE QUASARS , 2014, 1403.3166.

[36]  M. Dietrich,et al.  TRACING THE OUTFLOW OF A z = 0.334 FeLoBAL: NEW CONSTRAINTS FROM LOW-IONIZATION ABSORBERS IN FBQS J1151+3822 , 2014, 1401.0605.

[37]  A. Myers,et al.  BROAD ABSORPTION LINE VARIABILITY ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE , 2013, 1309.5364.

[38]  E. Choi,et al.  Consequences of Mechanical and Radiative Feedback from Black Holes in Disc Galaxy Mergers , 2013, 1308.3719.

[39]  N. Arav,et al.  Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238−1904 , 2013, 1305.2181.

[40]  F. Hamann,et al.  The average absorption properties of broad absorption line quasars at 800 < λrest < 3000 Å, and the underlying physical parameters , 2013, 1304.0986.

[41]  C. Benn,et al.  MAJOR CONTRIBUTOR TO AGN FEEDBACK: VLT X-SHOOTER OBSERVATIONS OF S iv BALQSO OUTFLOWS , 2012, 1211.6250.

[42]  H. Schmitt,et al.  Determining Inclinations of Active Galactic Nuclei Via Their Narrow-Line Region Kinematics , 2012, 1308.4129.

[43]  C. Benn,et al.  BAL PHOSPHORUS ABUNDANCE AND EVIDENCE FOR IMMENSE IONIC COLUMN DENSITIES IN QUASAR OUTFLOWS: VLT/X-SHOOTER OBSERVATIONS OF QUASAR SDSS J1512+1119 , 2012, 1208.5910.

[44]  S. Paltani,et al.  Multiwavelength campaign on Mrk 509. X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopy , 2012 .

[45]  S. Paltani,et al.  Multiwavelength Campaign on Mrk 509 X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopy , 2012, 1205.2559.

[46]  G. Kriss,et al.  A 10 kpc SCALE SEYFERT GALAXY OUTFLOW: HST/COS OBSERVATIONS OF IRAS F22456−5125 , 2012, 1205.0189.

[47]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[48]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[49]  E. Quataert,et al.  A physical model of FeLoBALs: implications for quasar feedback , 2011, 1108.0413.

[50]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2011, 2209.03987.

[51]  S. Autor,et al.  REVISTA MEXICANA DE ASTRONOMÍA Y ASTROFÍSICA , 2011 .

[52]  J. Shields,et al.  Variability in quasar broad absorption line outflows – I. Trends in the short-term versus long-term data , 2010, 1012.2336.

[53]  James T. Allen,et al.  A strong redshift dependence of the broad absorption line quasar fraction , 2010, 1007.3991.

[54]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[55]  E. Bullock,et al.  MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK , 2010, 1004.0276.

[56]  N. Soker A moderate cooling flow phase at galaxy formation , 2009, 0912.0783.

[57]  K. Korista,et al.  THE QUASAR OUTFLOW CONTRIBUTION TO AGN FEEDBACK: VLT MEASUREMENTS OF SDSS J0318-0600 , 2009, 0911.3896.

[58]  V. Springel,et al.  The case for AGN feedback in galaxy groups , 2009, 0911.2641.

[59]  Usa,et al.  QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES , 2009, 0909.1326.

[60]  Brandon C. Kelly,et al.  ARE THE VARIATIONS IN QUASAR OPTICAL FLUX DRIVEN BY THERMAL FLUCTUATIONS? , 2009, 0903.5315.

[61]  D. York,et al.  A CATALOG OF BROAD ABSORPTION LINE QUASARS IN SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 , 2008, 0810.2747.

[62]  L. Dursi,et al.  Draping of Cluster Magnetic Fields over Bullets and Bubbles—Morphology and Dynamic Effects , 2007, 0711.0213.

[63]  P. Hall,et al.  Acceleration and Substructure Constraints in a Quasar Outflow , 2007, 0704.3772.

[64]  Jelle S. Kaastra,et al.  Chemical Abundances in an AGN Environment: X-Ray/UV Campaign on the Markarian 279 Outflow , 2006, astro-ph/0611928.

[65]  Isaac Shlosman,et al.  The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? , 2006 .

[66]  S. Veilleux,et al.  Galactic Winds , 2005, astro-ph/0504435.

[67]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[68]  D. York,et al.  Continuum and Emission-Line Properties of Broad Absorption Line Quasars , 2003, astro-ph/0308508.

[69]  V. Narayanan,et al.  Unusual Broad Absorption Line Quasars from the Sloan Digital Sky Survey , 2002, astro-ph/0203252.

[70]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[71]  R. Weymann,et al.  High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191 , 2000, astro-ph/0011030.

[72]  R. Becker,et al.  Composite Spectra from the FIRST Bright Quasar Survey , 2000, astro-ph/0008396.

[73]  Boulder,et al.  Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation , 2000, astro-ph/0005315.

[74]  K. Korista,et al.  Hubble Space Telescope Observations of the Broad Absorption Line QuasarPG 0946+301 , 1998, astro-ph/9810309.

[75]  H. Mason,et al.  CHIANTI - an atomic database for emission lines - I. Wavelengths greater than 50 Å , 1997 .

[76]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[77]  C. Norman,et al.  Stellar Contrails in Quasi-stellar Objects: The Origin of Broad Absorption Lines , 1995 .

[78]  J. Krolik,et al.  Observable Properties of X-Ray--heated Winds in Active Galactic Nuclei: Warm Reflectors and Warm Absorbers: Erratum , 1995, astro-ph/9501089.

[79]  A. Königl,et al.  DISK-DRIVEN HYDROMAGNETIC WINDS AS A KEY INGREDIENT OF ACTIVE GALACTIC NUCLEI UNIFICATION SCHEMES , 1994 .

[80]  E. Burbidge,et al.  Broad absorption-line time variability in the QSO CSO 203 , 1992 .

[81]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[82]  G. Ferland,et al.  What heats the hot phase in active nuclei , 1987 .

[83]  David A. Glanzer,et al.  Technical Overview , 2008 .