Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone

The production of high aspect ratio cellulose nanofibres without resorting to very harsh mechanical and/or chemical processing steps remains a challenge that hinders progress in the fast-moving nanocellulose field. In response to this challenge, herein we report the preparation of high aspect ratio (>500) and small diameter (<8 nm) cellulose nanofibrils through the deconstruction of Australian native ‘spinifex’ grass (Triodia pungens) by applying very mild pulping conditions combined with only one pass of high pressure homogenization. Spinifex grass has an unusually high hemicellulose content, which facilitates this easy fibrillation process. Tensile measurements of the nanopaper produced by vacuum filtration indicated a high toughness of about 12 MJ m−3, a tensile strength of 82 MPa and a high elongation at break of 18%. The transverse elastic modulus of single nanofibrils analysed by AM-FM is in the range of 19–24 GPa. Under these mild processing conditions, Triodia pungens nanofibrils retained their crystallinity.

[1]  Richard A. Venditti,et al.  A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods , 2011 .

[2]  W. Marsden I and J , 2012 .

[3]  T. Lindström,et al.  Aerogels from nanofibrillated cellulose with tunable oleophobicity , 2010 .

[4]  Pere Mutjé,et al.  Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study , 2013 .

[5]  A. Dufresne,et al.  Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius) , 2012 .

[6]  M. Jonoobi,et al.  Producing low-cost cellulose nanofiber from sludge as new source of raw materials , 2012 .

[7]  Stuart J. Rowan,et al.  Bioinspired Mechanically Adaptive Polymer Nanocomposites with Water-Activated Shape-Memory Effect , 2011 .

[8]  H. Chanzy,et al.  Suspensions of cellulose microfibrils from sugar beet pulp , 1999 .

[9]  Janne Laine,et al.  A Fast Method to Produce Strong NFC Filmas as a Platform for Barrier and Functional Materials , 2016 .

[10]  E. J. Foster,et al.  Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals--processing matters. , 2014, ACS applied materials & interfaces.

[11]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[12]  A. Isogai,et al.  Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation , 2011 .

[13]  Tom Lindström,et al.  Deswelling of hardwood kraft pulp fibers by cationic polymers , 1990 .

[14]  M. Westoby,et al.  Regeneration after fire in Triodia R. Br , 1999 .

[15]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[16]  M. Vignon,et al.  Microfibrillated cellulose from the peel of prickly pear fruits , 2009 .

[17]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[18]  Arvind Raman,et al.  Uncertainty quantification in nanomechanical measurements using the atomic force microscope , 2011, Nanotechnology.

[19]  S. Craig,et al.  Leaf Ultrastructure of Triodia irritans: a C4 Grass Possessing an Unusual Arrangement of Photosynthetic Tissues , 1977 .

[20]  Wenshuai Chen,et al.  Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers , 2011 .

[21]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[22]  I. Ahmad,et al.  Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre , 2013 .

[23]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[24]  R. Sun,et al.  Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw , 2001 .

[25]  G Gentile,et al.  A multitechnique approach to assess the effect of ball milling on cellulose. , 2012, Carbohydrate polymers.

[26]  B. Adhikari,et al.  Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. , 2014, Carbohydrate polymers.

[27]  L. Mattoso,et al.  Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. , 2012, Carbohydrate polymers.

[28]  R. A. Bradstock,et al.  Fire regimes in the spinifex landscapes of Australia. , 2002 .

[29]  Unnikrishnan Gopalakrishnapanicker,et al.  Cellulose microfibres produced from banana plant wastes: Isolation and characterization , 2010 .

[30]  Guillaume Lamour,et al.  High intrinsic mechanical flexibility of mouse prion nanofibrils revealed by measurements of axial and radial Young's moduli. , 2014, ACS nano.

[31]  J. Putaux,et al.  Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. , 2009 .

[32]  Rajesh D. Anandjiwala,et al.  Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach , 2011 .

[33]  M. Sain,et al.  Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties , 2008 .

[34]  J. Labidi,et al.  Obtaining of eucalyptus microfibrils for adsorption of aromatic compounds in aqueous solution , 2013 .

[35]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[36]  H. Youn,et al.  HYDROGEN PEROXIDE BLEACHING OF HARDWOOD KRAFT PULP WITH ADSORBED BIRCH XYLAN AND ITS EFFECT ON PAPER PROPERTIES , 2011 .

[37]  O. Rojas,et al.  Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. , 2012, Bioresource technology.

[38]  A. Martini,et al.  Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation , 2013, Cellulose.

[39]  J. Mcwilliam,et al.  Significance of the C4 Pathway in Triodia irritans (Spinifex), a Grass Adapted to Arid Environments , 1974 .

[40]  Kentaro Abe,et al.  The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. , 2008, Biomacromolecules.

[41]  M. Lazarides A Revision of Triodia including Plectrachne (Poaceae, Eragrostideae, Triodiinae) , 1997 .

[42]  V. Markovich,et al.  Magnetic properties of electron-doped La0.23Ca0.77MnO3 nanoparticles , 2012, Journal of Nanoparticle Research.

[43]  Anand R. Sanadi,et al.  Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps , 2009 .

[44]  J. Simonsen,et al.  Size effects on the nanomechanical properties of cellulose I nanocrystals , 2012 .

[45]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[46]  O. Rojas,et al.  A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. , 2014, Carbohydrate polymers.

[47]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[48]  Olli Ikkala,et al.  Strong and tough cellulose nanopaper with high specific surface area and porosity. , 2011, Biomacromolecules.

[49]  R. Sun,et al.  Characteristics of degraded cellulose obtained from steam-exploded wheat straw. , 2005, Carbohydrate research.

[50]  J. Bras,et al.  Nanofibrillated Cellulose Surface Modification: A Review , 2013, Materials.

[51]  J. Oddershede,et al.  On the determination of crystallinity and cellulose content in plant fibres , 2005 .

[52]  Xin Xu,et al.  Atomic force microscopy characterization of cellulose nanocrystals. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[53]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[54]  R. Pettersen Wood Sugar Analysis by Anion Chromatography , 1991 .

[55]  S. Berot,et al.  Rheological characterization of microfibrillated cellulose suspensions after freezing , 2010 .

[56]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[57]  Lynley A. Wallis,et al.  Indigenous and modern biomaterials derived from Triodia (‘spinifex’) grasslands in Australia , 2012 .

[58]  Martina Lille,et al.  The role of hemicellulose in nanofibrillated cellulose networks , 2013 .

[59]  Wenshuai Chen,et al.  Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments , 2011 .

[60]  Scott Renneckar,et al.  Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures , 2009 .