Synergistic effects of APOE and sex on the gut microbiome of young EFAD transgenic mice

[1]  Huidong Tang,et al.  Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota , 2019, Alzheimer's & Dementia.

[2]  Juan Maldonado Weng,et al.  The role of APOE in transgenic mouse models of AD , 2019, Neuroscience Letters.

[3]  Molly Fox,et al.  Alzheimer's disease and symbiotic microbiota: an evolutionary medicine perspective , 2019, Annals of the New York Academy of Sciences.

[4]  Lanjuan Li,et al.  Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort , 2019, Brain, Behavior, and Immunity.

[5]  J. Hort,et al.  Antibiotics, gut microbiota, and Alzheimer’s disease , 2019, Journal of Neuroinflammation.

[6]  J. Gilbert,et al.  Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes , 2019, The Journal of experimental medicine.

[7]  G. Guillemin,et al.  Microbiota Alterations in Alzheimer’s Disease: Involvement of the Kynurenine Pathway and Inflammation , 2019, Neurotoxicity Research.

[8]  A. Minihane,et al.  APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[9]  T. Unno,et al.  Sex Differences in Gut Microbiota , 2019, The world journal of men's health.

[10]  Xianlin Han,et al.  Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome , 2018, Alzheimer's & Dementia.

[11]  H. Sokol,et al.  Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice , 2018, Nature Communications.

[12]  M. Nagarkatti,et al.  The role of gut microbiome and associated metabolome in the regulation of neuroinflammation in multiple sclerosis and its implications in attenuating chronic inflammation in other inflammatory and autoimmune disorders , 2018, Immunology.

[13]  Huadong Zhou,et al.  Gut Microbiota is Altered in Patients with Alzheimer's Disease. , 2018, Journal of Alzheimer's disease : JAD.

[14]  Luke R. Thompson,et al.  Best practices for analysing microbiomes , 2018, Nature Reviews Microbiology.

[15]  P. Iozzo,et al.  Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet , 2018, Scientific Reports.

[16]  G. Suen,et al.  The Ruminococci: key symbionts of the gut ecosystem , 2018, Journal of Microbiology.

[17]  S. Bakker,et al.  Roles of high apolipoprotein E blood levels and HDL in development of familial dysbetalipoproteinemia in ε2ε2 subjects. , 2017, Clinical biochemistry.

[18]  B. Escribano,et al.  Interrelationships Among Gut Microbiota and Host: Paradigms, Role in Neurodegenerative Diseases and Future Prospects. , 2018, CNS & neurological disorders drug targets.

[19]  A. Jačan,et al.  Visceral Inflammation and Immune Activation Stress the Brain , 2017, Front. Immunol..

[20]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[21]  Sterling C. Johnson,et al.  Gut microbiome alterations in Alzheimer’s disease , 2017, Scientific Reports.

[22]  M. Herbst-Kralovetz,et al.  Estrogen-gut microbiome axis: Physiological and clinical implications. , 2017, Maturitas.

[23]  F. O'Gara,et al.  Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism , 2017, Microbiome.

[24]  M. Jorquera,et al.  Bacterial Community Profile of the Gut Microbiota Differs between Hypercholesterolemic Subjects and Controls , 2017, BioMed research international.

[25]  B. Hamaker,et al.  Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota , 2017, Scientific Reports.

[26]  M. LaDu,et al.  EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer’s disease[S] , 2017, Journal of Lipid Research.

[27]  K. Magori,et al.  The chicken or the egg dilemma: intestinal dysbiosis in multiple sclerosis. , 2017, Annals of translational medicine.

[28]  Aleksandra A. Kolodziejczyk,et al.  Dysbiosis and the immune system , 2017, Nature Reviews Immunology.

[29]  G. Frisoni,et al.  Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota , 2017, Scientific Reports.

[30]  G. Frisoni,et al.  Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly , 2017, Neurobiology of Aging.

[31]  Bin Zhao,et al.  The Gut Microbiota and Alzheimer's Disease. , 2017, Journal of Alzheimer's disease : JAD.

[32]  A. Marais,et al.  Autosomal dominant familial dysbetalipoproteinemia: A pathophysiological framework and practical approach to diagnosis and therapy. , 2017, Journal of clinical lipidology.

[33]  Zeynep Madak-Erdogan,et al.  Estrogen and Microbiota Crosstalk: Should We Pay Attention? , 2016, Trends in Endocrinology & Metabolism.

[34]  Reetta Satokari,et al.  Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. , 2016, Front. Microbiol..

[35]  Ali A. Faruqi,et al.  Gut microbiota in early pediatric multiple sclerosis: a case−control study , 2016, European journal of neurology.

[36]  K. Hase,et al.  The diet-microbiota-metabolite axis regulates the host physiology. , 2016, Journal of biochemistry.

[37]  T. Drake,et al.  Sex differences and hormonal effects on gut microbiota composition in mice , 2016, Gut microbes.

[38]  Laura M Cox,et al.  Alterations of the human gut microbiome in multiple sclerosis , 2016, Nature Communications.

[39]  Krishna R. Kalari,et al.  Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls , 2016, Scientific Reports.

[40]  J. Clemente,et al.  Intestinal Microbiota Is Influenced by Gender and Body Mass Index , 2016, PloS one.

[41]  J. Raes,et al.  Faecal Metaproteomic Analysis Reveals a Personalized and Stable Functional Microbiome and Limited Effects of a Probiotic Intervention in Adults , 2016, PloS one.

[42]  F. Bäckhed,et al.  Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism1[S] , 2016, Journal of Lipid Research.

[43]  T. Bale,et al.  Sex differences in the gut microbiome–brain axis across the lifespan , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Ahmed A. Metwally,et al.  Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. , 2016, Biochemical and biophysical research communications.

[45]  J. Raes,et al.  Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design , 2015, FEMS microbiology reviews.

[46]  S. Turroni,et al.  High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome , 2015, Gut.

[47]  C. Kahn,et al.  Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. , 2015, Cell metabolism.

[48]  Matthew L Senjem,et al.  Age, Sex, and APOE ε4 Effects on Memory, Brain Structure, and β-Amyloid Across the Adult Life Span. , 2015, JAMA neurology.

[49]  J. Goedert,et al.  Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome , 2015, PloS one.

[50]  Pinal N. Kanabar,et al.  APOE‐modulated Aβ‐induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective , 2015, Journal of neurochemistry.

[51]  P. Wolf,et al.  Gender and incidence of dementia in the Framingham Heart Study from mid-adult life , 2015, Alzheimer's & Dementia.

[52]  N. Natarajan,et al.  From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology. , 2014, American journal of physiology. Cell physiology.

[53]  P. Bhargava,et al.  Gut Microbiome and Multiple Sclerosis , 2014, Current Neurology and Neuroscience Reports.

[54]  William A. Walters,et al.  Conducting a Microbiome Study , 2014, Cell.

[55]  T. Dinan,et al.  Minireview: Gut microbiota: the neglected endocrine organ. , 2014, Molecular endocrinology.

[56]  Andre Altmann,et al.  Sex modifies the APOE‐related risk of developing Alzheimer disease , 2014, Annals of neurology.

[57]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[58]  J. Cryan,et al.  Dealing with ability of the microbiota to influence the brain, and ultimately cognition and behavioral. , 2014, Advances in experimental medicine and biology.

[59]  A. Dale,et al.  Higher Rates of Decline for Women and Apolipoprotein E ε4 Carriers , 2013, American Journal of Neuroradiology.

[60]  Barbara M. Bakker,et al.  The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism , 2013, Journal of Lipid Research.

[61]  Aly A. Khan,et al.  Gender bias in autoimmunity is influenced by microbiota. , 2013, Immunity.

[62]  J. Goedert,et al.  Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study , 2012, Journal of Translational Medicine.

[63]  E. Weeber,et al.  APOE4-specific Changes in Aβ Accumulation in a New Transgenic Mouse Model of Alzheimer Disease* , 2012, The Journal of Biological Chemistry.

[64]  M. Surette,et al.  The interplay between the intestinal microbiota and the brain , 2012, Nature Reviews Microbiology.

[65]  Rob Knight,et al.  Defining the human microbiome. , 2012, Nutrition reviews.

[66]  C. Schadt,et al.  Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. , 2012, Environmental microbiology.

[67]  G. Macfarlane,et al.  Bacteria, colonic fermentation, and gastrointestinal health. , 2012, Journal of AOAC International.

[68]  H. Dupont,et al.  The intestinal microbiota and chronic disorders of the gut , 2011, Nature Reviews Gastroenterology &Hepatology.

[69]  V. Leoni The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer's disease , 2011, Clinical chemistry and laboratory medicine.

[70]  Witold R. Rudnicki,et al.  Feature Selection with the Boruta Package , 2010 .

[71]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[72]  F. Bushman,et al.  QIIME allows integration and analysis of high-throughput community sequencing data. Nat. Meth. , 2010 .

[73]  R. Mayeux,et al.  Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia. , 2010, Journal of Alzheimer's disease : JAD.

[74]  Patrice D Cani,et al.  The role of the gut microbiota in energy metabolism and metabolic disease. , 2009, Current pharmaceutical design.

[75]  M. Ohno,et al.  Intraneuronal β-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation , 2006, The Journal of Neuroscience.

[76]  J. Doré,et al.  Differences in Fecal Microbiota in Different European Study Populations in Relation to Age, Gender, and Country: a Cross-Sectional Study , 2006, Applied and Environmental Microbiology.

[77]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[78]  Charles DeCarli,et al.  Sex, Apolipoprotein E ε4 Status, and Hippocampal Volume in Mild Cognitive Impairment , 2005 .

[79]  Charles DeCarli,et al.  Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. , 2005, Archives of neurology.

[80]  H. Braak,et al.  The Biphasic Relationship between Regional Brain Senile Plaque and Neurofibrillary Tangle Distributions: Modification by Age, Sex, and APOE Polymorphism , 2004, Annals of the New York Academy of Sciences.

[81]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[82]  E. L. Mortensen,et al.  A gender difference in the association between APOE genotype and age-related cognitive decline , 2001, Neurology.

[83]  G. Maestre,et al.  Modulation by age and gender of risk for Alzheimer's disease and vascular dementia associated with the apolipoprotein E-ε4 allele in Latin Americans: findings from the Maracaibo Aging Study , 2001, Neuroscience Letters.

[84]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[85]  K. R. Clarke,et al.  Change in marine communities : an approach to statistical analysis and interpretation , 2001 .

[86]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[87]  A Hofman,et al.  Gender differences in the incidence of AD and vascular dementia , 1999, Neurology.

[88]  C. Finch,et al.  Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease. , 1999, Alzheimer disease and associated disorders.

[89]  K. Welsh-Bohmer,et al.  APOE-ε4 count predicts age when prevalence of AD increases, then declines , 1999, Neurology.

[90]  B W Wyse,et al.  APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. , 1999, Neurology.

[91]  N. Maeda,et al.  Type III hyperlipoproteinemia and spontaneous atherosclerosis in mice resulting from gene replacement of mouse Apoe with human Apoe*2. , 1998, The Journal of clinical investigation.

[92]  Y. Agid,et al.  Apolipoprotein E ϵ4 Allele and Familial Aggregation of Alzheimer Disease , 1998 .

[93]  Y. Agid,et al.  Apolipoprotein E epsilon4 allele and familial aggregation of Alzheimer disease. , 1998, Archives of neurology.

[94]  J. Haines,et al.  Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. , 1997, JAMA.

[95]  J. Haines,et al.  Effects of Age, Sex, and Ethnicity on the Association Between Apolipoprotein E Genotype and Alzheimer Disease: A Meta-analysis , 1997 .

[96]  B. Hyman,et al.  Apolipoprotein E and cognitive change in an elderly population , 1996, Annals of neurology.

[97]  E M Wijsman,et al.  Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. , 1996, American journal of human genetics.

[98]  P. de Knijff,et al.  Genetic heterogeneity of apolipoprotein E and its influence on plasma lipid and lipoprotein levels , 1994, Human mutation.

[99]  K. Weisgraber Apolipoprotein E: structure-function relationships. , 1994, Advances in protein chemistry.

[100]  K. R. Clarke,et al.  Non‐parametric multivariate analyses of changes in community structure , 1993 .

[101]  J. Dallongeville,et al.  Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. , 1992, Journal of lipid research.

[102]  C. Sing,et al.  Apolipoprotein E polymorphism and atherosclerosis. , 1988, Arteriosclerosis.