The inner structure of ΛCDM haloes – II. Halo mass profiles and low surface brightness galaxy rotation curves

We use a set of high-resolution cosmological N-body simulations to investigate the inner mass profile of galaxy-sized cold dark matter (CDM) haloes. These simulations extend the numerical convergence study presented in Paper I of this series, and demonstrate that the mass profile of CDM galaxy haloes can be robustly estimated beyond a minimum converged radius of order r conv ∼ 1 h -1 kpc in our highest-resolution runs. The density profiles of simulated haloes become progressively shallower from the virial radius inwards, and show no sign of approaching a well-defined power law near the centre. At r conv , the density profile is steeper than expected from the formula proposed by Navarro, Frenk & White, which has a p α r -1 cusp, but significantly shallower than the steeply divergent p α r -1.5 cusp proposed by Moore et al. We perform a direct comparison of the spherically averaged dark matter circular velocity profiles with Ha rotation curves of a sample of low surface brightness (LSB) galaxies. We find that most galaxies in the sample (about 70 per cent) have rotation curves that are consistent with the structure of CDM haloes. Of the remainder, 20 per cent have rotation curves which cannot be fit by any smooth fitting function with few free parameters, and 10 per cent are inconsistent with CDM haloes. However, the latter consist mostly of rotation curves that do not extend to large enough radii to accurately determine their shapes and maximum velocities. We conclude that the inner structure of CDM haloes is not manifestly inconsistent with the rotation curves of LSB galaxies.

[1]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[2]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[3]  B. Madore,et al.  The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies , 2002, astro-ph/0210152.

[4]  J. Bullock,et al.  Inflation, cold dark matter, and the central density problem , 2002, astro-ph/0205216.

[5]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[6]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[7]  L. Verde,et al.  Dark halo properties from rotation curves , 2002, astro-ph/0201352.

[8]  S. Alam,et al.  Dark Matter Properties and Halo Central Densities , 2001, astro-ph/0109392.

[9]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[10]  V. Rubin,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002, astro-ph/0201276.

[11]  V. Rubin,et al.  Mass Density Profiles of Low Surface Brightness Galaxies , 2001, astro-ph/0103102.

[12]  J. Navarro,et al.  The Phase-Space Density Profiles of Cold Dark Matter Halos , 2001, astro-ph/0104002.

[13]  M. Steinmetz,et al.  The Power Spectrum Dependence of Dark Matter Halo Concentrations , 2000, astro-ph/0012337.

[14]  K. Freeman,et al.  The Various Kinematics of Dwarf Irregular Galaxies in Nearby Groups and Their Dark Matter Distributions , 2000 .

[15]  J. Makino,et al.  Structure of Dark Matter Halos from Hierarchical Clustering , 2000, astro-ph/0306203.

[16]  P. Amram,et al.  Accurate Determination of the Mass Distribution in Spiral Galaxies. II. Testing the Shape of Dark Halos , 2000, astro-ph/0006449.

[17]  J. Bullock,et al.  Resolving the Structure of Cold Dark Matter Halos , 2000, astro-ph/0006343.

[18]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[19]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[20]  R. Swaters,et al.  High-Resolution Rotation Curves of Low Surface Brightness Galaxies , 2000, The Astrophysical journal.

[21]  B. Robertson,et al.  Constraints on the Structure of Dark Matter Halos from the Rotation Curves of Low Surface Brightness Galaxies , 1999, astro-ph/9911372.

[22]  G. Lake,et al.  Density Profiles and Substructure of Dark Matter Halos: Converging Results at Ultra-High Numerical Resolution , 1999, astro-ph/9910166.

[23]  D. Spergel,et al.  Observational evidence for self-interacting cold dark matter , 1999, Physical review letters.

[24]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[25]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[26]  J. Peacock,et al.  The structure of galaxy clusters in various cosmologies , 1998 .

[27]  P. R. Wilson,et al.  The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data , 1998 .

[28]  S. McGaugh,et al.  Testing the Dark Matter Hypothesis with Low Surface Brightness Galaxies and Other Evidence , 1998, astro-ph/9801123.

[29]  S. Courteau,et al.  Optical Rotation Curves and Linewidths for Tully-Fisher Applications , 1997, astro-ph/9709201.

[30]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[31]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[32]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[33]  Toshiyuki Fukushige,et al.  On the Origin of Cusps in Dark Matter Halos , 1996, astro-ph/9610005.

[34]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[35]  A. Noriega-Crespo,et al.  The Closest Planetary Nebula, SH 2-216, and Its Interaction with the Interstellar Medium , 1995 .

[36]  Y. Jing,et al.  Substructures and density profiles of clusters in models of galaxy formation , 1994, astro-ph/9412072.

[37]  S. White,et al.  Simulations of X-ray clusters , 1994, astro-ph/9408069.

[38]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[39]  A. Evrard,et al.  The cosmological dependence of cluster density profiles , 1994, astro-ph/9404030.

[40]  J. Primack,et al.  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[41]  D. Weinberg,et al.  Testing the gravitational instability hypothesis , 1993, astro-ph/9311052.

[42]  Michael S. Warren,et al.  Dark halos formed via dissipationless collapse. I: Shapes and alignment of angular momentum , 1992 .

[43]  S. White,et al.  Models for Galaxy halos in an open universe , 1992 .

[44]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[45]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[46]  G. Efstathiou,et al.  Angular momentum from tidal torques , 1987 .

[47]  W. H. Zurek,et al.  Primordial density fluctuations and the structure of galactic haloes , 1986, Nature.

[48]  Y. Hoffman,et al.  Local density maxima - Progenitors of structure , 1985 .

[49]  G. Efstathiou,et al.  Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence , 1985, Nature.

[50]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[51]  P. Goldreich,et al.  Self-similar gravitational collapse in an expanding universe , 1984 .

[52]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .