After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C ii] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  M. Cluver,et al.  Calibrating Star Formation in WISE Using Total Infrared Luminosity , 2017, 1710.03469.

[3]  D. Narayanan,et al.  Massive Quenched Galaxies at z ∼ 0.7 Retain Large Molecular Gas Reservoirs , 2017, 1708.03337.

[4]  E. Bell,et al.  Supermassive Black Holes as the Regulators of Star Formation in Central Galaxies , 2017, 1707.01097.

[5]  S. Faber,et al.  Molecular gas during the post-starburst phase: low gas fractions in green-valley Seyfert post-starburst galaxies , 2017, 1705.00668.

[6]  L. Young,et al.  Herschel Spectroscopy of Early-type Galaxies , 2017, 1705.00653.

[7]  B. Groves,et al.  Updated 34-band Photometry for the SINGS/KINGFISH Samples of Nearby Galaxies , 2017, 1702.05205.

[8]  K. Alatalo,et al.  Powerful H2 Line Cooling in Stephan’s Quintet. II. Group-wide Gas and Shock Modeling of the Warm H2 and a Comparison with [C ii] 157.7 μm Emission and Kinematics , 2017, 1701.03226.

[9]  A. Coil,et al.  A massive, quiescent, population II galaxy at a redshift of 2.1 , 2016, Nature.

[10]  B. Groves,et al.  THE SPATIALLY RESOLVED COOLING LINE DEFICIT IN GALAXIES , 2016, 1611.01521.

[11]  S. White,et al.  QUIESCENCE CORRELATES STRONGLY WITH DIRECTLY MEASURED BLACK HOLE MASS IN CENTRAL GALAXIES , 2016, 1609.07141.

[12]  R. Klessen,et al.  MODELING DUST EVOLUTION IN GALAXIES WITH A MULTIPHASE, INHOMOGENEOUS ISM , 2016, 1608.04781.

[13]  Edinburgh,et al.  The evolution of post-starburst galaxies from z=2 to 0.5 , 2016, 1608.00588.

[14]  L. Kewley,et al.  Welcome to the Twilight Zone: The Mid-infrared Properties of Post-starburst Galaxies , 2016, 1608.00256.

[15]  J. Smith,et al.  LIGHTING THE DARK MOLECULAR GAS: H2 AS A DIRECT TRACER , 2016, 1607.08036.

[16]  Luth,et al.  The many faces of LINER-like galaxies: a WISE view , 2016, 1607.04601.

[17]  A. Hopkins,et al.  Galaxy and Mass Assembly (GAMA): Exploring the WISE Web in G12 , 2016, 1607.01190.

[18]  I. Chilingarian,et al.  COMPACT E+A GALAXIES AS A PROGENITOR OF MASSIVE COMPACT QUIESCENT GALAXIES AT 0.2 < z < 0.8 , 2016, 1605.09734.

[19]  B. Robertson,et al.  ALMA Resolves the Nuclear Disks of Arp 220 , 2016, 1605.09381.

[20]  M. Bershady,et al.  SDSS IV MaNGA – spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs , 2016, 1605.07189.

[21]  Ipac,et al.  SHOCKED POSTSTARBURST GALAXY SURVEY. II. THE MOLECULAR GAS CONTENT AND PROPERTIES OF A SUBSET OF SPOGs , 2016, 1604.01122.

[22]  Mark Lacy,et al.  SHOCKED POSTSTARBUST GALAXY SURVEY. I. CANDIDATE POST-STARBUST GALAXIES WITH EMISSION LINE RATIOS CONSISTENT WITH SHOCKS , 2016, 1601.05085.

[23]  K. Alatalo,et al.  STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS , 2015, 1511.05968.

[24]  Granada,et al.  STAR FORMATION SUPPRESSION IN COMPACT GROUP GALAXIES: A NEW PATH TO QUENCHING? , 2015, 1509.05779.

[25]  A. Evans,et al.  MORPHOLOGY AND MOLECULAR GAS FRACTIONS OF LOCAL LUMINOUS INFRARED GALAXIES AS A FUNCTION OF INFRARED LUMINOSITY AND MERGER STAGE , 2016, 1605.05417.

[26]  C. Lintott,et al.  An infrared study of local galaxy mergers , 2015, 1503.07877.

[27]  S. Maddox,et al.  Molecular and atomic gas in dust lane early-type galaxies - I. Low star formation efficiencies in minor merger remnants , 2015, 1503.05162.

[28]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[29]  M. F. Astronomie,et al.  DISCOVERY OF LARGE MOLECULAR GAS RESERVOIRS IN POST-STARBURST GALAXIES , 2015, 1501.00983.

[30]  V. Wild,et al.  The evolution of the cold interstellar medium in galaxies following a starburst , 2014, 1412.6090.

[31]  P. T. de Zeeuw,et al.  SUPPRESSION OF STAR FORMATION IN NGC 1266 , 2014, 1410.4556.

[32]  L. Kewley,et al.  CATCHING QUENCHING GALAXIES: THE NATURE OF THE WISE INFRARED TRANSITION ZONE , 2014, 1409.2489.

[33]  Benjamin D. Johnson,et al.  Empirical ugri-UBVRc transformations for galaxies , 2014, 1408.1131.

[34]  J. Trump,et al.  FROM STARBURST TO QUIESCENCE: TESTING ACTIVE GALACTIC NUCLEUS FEEDBACK IN RAPIDLY QUENCHING POST-STARBURST GALAXIES , 2014, 1407.3834.

[35]  A. Evans,et al.  MID-INFRARED PROPERTIES OF LUMINOUS INFRARED GALAXIES. II. PROBING THE DUST AND GAS PHYSICS OF THE GOALS SAMPLE , 2014, 1406.3891.

[36]  K. Alatalo,et al.  The ATLAS3D Project – XXVIII. Dynamically driven star formation suppression in early-type galaxies , 2014, 1403.4850.

[37]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[38]  G. Helou,et al.  A TWO-PARAMETER MODEL FOR THE INFRARED/SUBMILLIMETER/RADIO SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES AND ACTIVE GALACTIC NUCLEI , 2014, 1402.1495.

[39]  S. Wuyts,et al.  The total infrared luminosity may significantly overestimate the star formation rate of quenching and recently quenched galaxies , 2014, 1402.0006.

[40]  R. Propris,et al.  A panchromatic survey of post-starburst mergers: searching for feedback , 2014, 1401.4830.

[41]  A. Hopkins,et al.  GALAXY AND MASS ASSEMBLY (GAMA): MID-INFRARED PROPERTIES AND EMPIRICAL RELATIONS FROM WISE , 2014, 1401.0837.

[42]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[43]  Bernhard R. Brandl,et al.  AN ATLAS OF GALAXY SPECTRAL ENERGY DISTRIBUTIONS FROM THE ULTRAVIOLET TO THE MID-INFRARED , 2013, 1312.3029.

[44]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[45]  Caltech,et al.  MID-INFRARED ATOMIC FINE-STRUCTURE EMISSION-LINE SPECTRA OF LUMINOUS INFRARED GALAXIES: SPITZER/IRS SPECTRA OF THE GOALS SAMPLE , 2013, 1309.4788.

[46]  P. P. van der Werf,et al.  SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL , 2013, 1309.1525.

[47]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[48]  B. Groves,et al.  ANDROMEDA'S DUST , 2013, 1306.2304.

[49]  A. Bressan,et al.  A Spitzer–IRS spectroscopic atlas of early-type galaxies in the Revised Shapley–Ames Catalog , 2013, 1303.4584.

[50]  M. Zwaan,et al.  The cold gas content of post-starburst galaxies , 2013, 1303.4307.

[51]  A. Monson,et al.  THE IMACS CLUSTER BUILDING SURVEY. V. FURTHER EVIDENCE FOR STARBURST RECYCLING FROM QUANTITATIVE GALAXY MORPHOLOGIES , 2013, 1303.4148.

[52]  H. Hwang,et al.  THE MID-INFRARED AND NEAR-ULTRAVIOLET EXCESS EMISSIONS OF QUIESCENT GALAXIES ON THE RED SEQUENCE , 2013, 1302.6644.

[53]  T. Bitsakis,et al.  ENHANCED WARM H2 EMISSION IN THE COMPACT GROUP MID-INFRARED “GREEN VALLEY” , 2013, 1301.4549.

[54]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[55]  D. Calzetti,et al.  QUANTIFYING NON-STAR-FORMATION-ASSOCIATED 8 μm DUST EMISSION IN NGC 628 , 2012, 1211.3332.

[56]  K. Sheth,et al.  EXTENDING THE NEARBY GALAXY HERITAGE WITH WISE: FIRST RESULTS FROM THE WISE ENHANCED RESOLUTION GALAXY ATLAS , 2012, 1210.3628.

[57]  A. Evans,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF LOCAL LUMINOUS AND ULTRALUMINOUS INFRARED GALAXIES , 2012, 1209.1611.

[58]  D. Calzetti,et al.  MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946 , 2012, 1207.4186.

[59]  D. Ballantyne,et al.  THE MERGER-TRIGGERED ACTIVE GALACTIC NUCLEUS CONTRIBUTION TO THE ULTRALUMINOUS INFRARED GALAXY POPULATION , 2012, 1206.1052.

[60]  P. Hopkins,et al.  Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium , 2012, 1206.0011.

[61]  N. Evans,et al.  Star Formation in the Milky Way and Nearby Galaxies , 2012, 1204.3552.

[62]  T. Lauer,et al.  THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY , 2012, 1204.0010.

[63]  B. Groves,et al.  RESOLVING THE FAR-IR LINE DEFICIT: PHOTOELECTRIC HEATING AND FAR-IR LINE COOLING IN NGC 1097 AND NGC 4559 , 2012, 1201.1016.

[64]  B. Groves,et al.  HERSCHEL FAR-INFRARED AND SUBMILLIMETER PHOTOMETRY FOR THE KINGFISH SAMPLE OF NEARBY GALAXIES , 2011, 1112.1093.

[65]  B. Groves,et al.  KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel: Survey Description and Image Atlas , 2011, 1111.4438.

[66]  M. Baes,et al.  The reliability of [C ii] as an indicator of the star formation rate , 2011 .

[67]  E. L. Wright,et al.  THE SPITZER–WISE SURVEY OF THE ECLIPTIC POLES , 2011 .

[68]  D. Calzetti,et al.  CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE–FREE EMISSION IN NGC 6946 , 2011, 1105.4877.

[69]  K. Alatalo,et al.  The ATLAS3D project – IV. The molecular gas content of early-type galaxies , 2011, 1102.4633.

[70]  L. Hernquist,et al.  K+A GALAXIES AS THE AFTERMATH OF GAS-RICH MERGERS: SIMULATING THE EVOLUTION OF GALAXIES AS SEEN BY SPECTROSCOPIC SURVEYS , 2011, 1102.3689.

[71]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[72]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[73]  Robert Antonucci,et al.  JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES , 2010, 1009.4533.

[74]  A. Diamond-Stanic,et al.  THE EFFECT OF ACTIVE GALACTIC NUCLEI ON THE MID-INFRARED AROMATIC FEATURES , 2010, 1009.2752.

[75]  Ipac,et al.  THE SPATIAL EXTENT OF (U)LIRGs IN THE MID-INFRARED. I. THE CONTINUUM EMISSION , 2010, 1009.0038.

[76]  Columbia,et al.  Optical vs. infrared studies of dusty galaxies and AGN: (I) Nebular emission lines , 2010, 1008.3160.

[77]  W. Zeilinger,et al.  UNUSUAL PAH EMISSION IN NEARBY EARLY-TYPE GALAXIES: A SIGNATURE OF AN INTERMEDIATE-AGE STELLAR POPULATION? , 2010, 1008.0009.

[78]  D. Thompson,et al.  A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION , 2010, 1006.4956.

[79]  A. Bolatto,et al.  THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD (S3MC): INSIGHTS INTO THE LIFE CYCLE OF POLYCYCLIC AROMATIC HYDROCARBONS , 2010, 1003.4516.

[80]  M. Cluver,et al.  POWERFUL H2 LINE COOLING IN STEPHAN's QUINTET. I. MAPPING THE SIGNIFICANT COOLING PATHWAYS IN GROUP-WIDE SHOCKS , 2009, 0912.0282.

[81]  P. Temi,et al.  SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR–COLOR SEQUENCE , 2009, 0911.0720.

[82]  M. Blanton,et al.  Physical properties and environments of nearby galaxies , 2009, 0908.3017.

[83]  S. Oliver,et al.  SPITZER IRS OBSERVATIONS OF k+a GALAXIES: A LINK BETWEEN POLYCYCLIC AROMATIC HYDROCARBON EMISSION PROPERTIES AND ACTIVE GALACTIC NUCLEUS FEEDBACK? , 2009 .

[84]  L. Kewley,et al.  GOALS: The Great Observatories All-Sky LIRG Survey , 2009, 0904.4498.

[85]  S. Serjeant,et al.  Mid-infrared spectroscopy of infrared-luminous galaxies at z∼ 0.5–3 , 2009, 0902.3369.

[86]  K. Sheth,et al.  THE SPITZER INFRARED NEARBY GALAXIES SURVEY: A HIGH-RESOLUTION SPECTROSCOPY ANTHOLOGY , 2008, 0811.4190.

[87]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[88]  L. Kewley,et al.  The MAPPINGS III Library of Fast Radiative Shock Models , 2008, 0805.0204.

[89]  Case Western Reserve University,et al.  Accepted in ApJ. Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE DETAILED EVOLUTION OF E+A GALAXIES INTO EARLY TYPES 1 , 2022 .

[90]  H. Roussel,et al.  Spectral Mapping Reconstruction of Extended Sources , 2007, 0708.3745.

[91]  P. Chanial,et al.  Stellar Evolutionary Effects on the Abundances of Polycyclic Aromatic Hydrocarbons and Supernova-Condensed Dust in Galaxies , 2007, 0708.0790.

[92]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[93]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[94]  P. Temi,et al.  Spitzer Observations of Transient, Extended Dust in Two Elliptical Galaxies: New Evidence of Recent Feedback Energy Release in Galactic Cores , 2007, 0705.3710.

[95]  R. Indebetouw,et al.  A Multiwavelength Study of M17: The Spectral Energy Distribution and PAH Emission Morphology of a Massive Star Formation Region , 2007 .

[96]  A. Szalay,et al.  The UV-Optical Galaxy Color-Magnitude Diagram. III. Constraints on Evolution from the Blue to the Red Sequence , 2007, astro-ph/0703281.

[97]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[98]  A. Pope,et al.  Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High-Redshift IR-Luminous Galaxies , 2007, astro-ph/0701409.

[99]  L. Armus,et al.  Mid-Infrared Galaxy Classification Based on Silicate Obscuration and PAH Equivalent Width , 2006, astro-ph/0611918.

[100]  L. Ho,et al.  The Mid-Infrared Fine-Structure Lines of Neon as an Indicator of Star Formation Rate in Galaxies , 2006, astro-ph/0611856.

[101]  D. Calzetti,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[102]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[103]  C. Tremonti,et al.  E+A Galaxies with Blue Cores: Active Galaxies in Transition , 2006, astro-ph/0606368.

[104]  D. Hollenbach,et al.  [Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions , 2006 .

[105]  D. Michielsen,et al.  The H I Content of E+A Galaxies , 2006, astro-ph/0604563.

[106]  L. Silva,et al.  Spitzer IRS spectra of Virgo Early-Type Galaxies: Detection of Stellar Silicate Emission , 2006, astro-ph/0602014.

[107]  J. Newman,et al.  On the Origin of [O II] Emission in Red-Sequence and Poststarburst Galaxies , 2005, astro-ph/0512446.

[108]  J. Moustakas,et al.  An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies , 2005, astro-ph/0511729.

[109]  A. Tielens,et al.  Pixie Dust: The Silicate Features in the Diffuse Interstellar Medium , 2005, astro-ph/0510156.

[110]  A. Tielens,et al.  The Detection of Crystalline Silicates in Ultraluminous Infrared Galaxies , 2005, astro-ph/0509859.

[111]  Chen Cao,et al.  PAH and Mid-Infrared Luminosities as Measures of Star Formation Rate in Spitzer First Look Survey Galaxies , 2005, astro-ph/0509281.

[112]  L. Kewley,et al.  Infrared Spectral Energy Distributions of Nearby Galaxies , 2005, astro-ph/0507645.

[113]  P. Hopkins,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[114]  D. Iono,et al.  Atomic and Molecular Gas in Colliding Galaxy Systems. I. The Data , 2005, astro-ph/0501588.

[115]  K. Mochizuki FAR-INFRARED [C II] EMISSION FROM THE CENTRAL REGIONS OF SPIRAL GALAXIES , 2004 .

[116]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[117]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[118]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[119]  D. Kelson,et al.  Field E+A Galaxies at Intermediate Redshifts (0.3 < z < 1) , 2004, astro-ph/0403484.

[120]  T. Lauer,et al.  E+A Galaxies and the Formation of Early-Type Galaxies at z ~ 0 , 2004, astro-ph/0402062.

[121]  F. Brighenti,et al.  Hot Gas In and Around Elliptical Galaxies , 2003, astro-ph/0309553.

[122]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[123]  R. Sambruna,et al.  A JOINT MID-INFRARED SPECTROSCOPIC AND X-RAY IMAGING INVESTIGATION OF LINER GALAXIES , 2003, astro-ph/0309082.

[124]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[125]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[126]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[127]  B. Draine,et al.  Do the Infrared Emission Features Need Ultraviolet Excitation? The Polycyclic Aromatic Hydrocarbon Model in UV-poor Reflection Nebulae , 2002, astro-ph/0201060.

[128]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[129]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[130]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[131]  D. Zaritsky,et al.  A Search for H I in E+A Galaxies , 2001, astro-ph/0101353.

[132]  B. Draine,et al.  Infrared Emission from Interstellar Dust Ii. the Diffuse Interstellar Medium , 2000 .

[133]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[134]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[135]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[136]  A. Dalgarno,et al.  Electron Energy Deposition in a Gas Mixture of Atomic and Molecular Hydrogen and Helium , 1999 .

[137]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[138]  J. Mulchaey,et al.  Hierarchical Evolution in Poor Groups of Galaxies , 1998, astro-ph/9803096.

[139]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[140]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[141]  Alexander G. G. M. Tielens,et al.  Dense Photodissociation Regions (PDRs) , 1997 .

[142]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[143]  S. Shectman,et al.  The environment of "E+A" galaxies , 1995, astro-ph/9512058.

[144]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[145]  R. Kennicutt,et al.  Past and Future Star Formation in Disk Galaxies , 1994 .

[146]  J. Kormendy,et al.  Ultraluminous IRAS galaxies: Formation of elliptical galaxies by merger-induced dissipative collapse , 1992 .

[147]  B. Draine,et al.  On the H 2 Line Emission from NGC 6240 and Other Starburst Galaxies: Erratum , 1992 .

[148]  P. Roche,et al.  The nature of the infrared luminous galaxies Arp 220 and NGC 6240 , 1989 .

[149]  W. Couch,et al.  A spectroscopic study of three rich galaxy clusters at z = 0.31 , 1987 .

[150]  George Helou,et al.  Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies , 1985 .

[151]  P. Roche,et al.  An investigation of the interstellar extinction. I: Towards dusty WC Wolf-Rayet stars , 1984 .

[152]  James E. Gunn,et al.  Spectroscopy of galaxies in distant clusters. II: The population of the 3C 295 cluster , 1983 .

[153]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[154]  D. Hollenbach,et al.  H2 cooling, dissociation, and infrared emission in shocked molecular clouds , 1978 .

[155]  F. Boulanger,et al.  SHOCK-ENHANCED C + EMISSION AND THE DETECTION OF H2O FROM STEPHAN QUINTET'S GROUP-WIDE SHOCK USING HERSCHEL , 2013 .

[156]  L. Rmus,et al.  MID-IR GALAXY CLASSIFICATION BASED ON SILICATE OBSCURATION AND PAH EQUIVALENT WIDTH , 2006 .

[157]  V. Harmandaris,et al.  THE DETECTION OF CRYSTALLINE SILICATES IN ULTRA-LUMINOUS I NFRARED GALAXIES , 2005 .

[158]  R. Arendt,et al.  Dust-gas interactions and the infrared emission from hot astrophysical plasmas , 1992 .

[159]  James J. Condon,et al.  Radio Emission from Normal Galaxies , 1992 .

[160]  B. Soifer,et al.  Dust and gas in the core of Arp 220 (IC 4553) , 1991 .

[161]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .