Wideband Line/Cable Models for Real-Time and Off-Line Simulations of Electromagnetic Transients

RESUME Cette these presente le developpement d’un modele mathematique pour les lignes et câbles de transmission de puissance. Ce modele est utilise pour la simulation des transitoires electromagnetiques en temps reel et en temps differe. La contribution est particulierement utile a la simulation en temps reel car ce type de modele n’existait pas avant. Le modele permet d’ameliorer la vitesse des calculs et contribue aussi a la recherche sur la stabilite numerique. Le modele propose est base sur le modele WideBand (WB) aussi appele “Universal line model (ULM)”. Il permet de prendre en compte la dependance en frequence des parametres de ligne et câble. Le modele ULM est donc reformule et restructure dans cette these pour repondre aux exigences strictes des simulations en temps reel. La structure du nouveau modele facilite la separation des reseaux en sous-blocs qui peuvent etre simules en parallele par un ensemble de processeurs. Une caracteristique de l’ULM qui a ete preservee dans le nouveau modele, est la representation rationnelle des matrices d’admittance caracteristique et de fonction de propagation. Ces matrices sont obtenues directement dans le domaine des phases en utilisant les methodes “Vector Fitting“ (VF) ou mieux “Weighted Vector Fitting” (WVF). Une question necessitant une consideration particuliere, est la manipulation des variables d’etat complexes produits par les poles complexes lors de l'utilisation de WVF. L’approche standard pour repondre a cette question est l’approche directe consistant a traiter tous les etats internes comme complexes. Dans le cas des etats reels, les parties imaginaires sont simplement nulles. Dans le cas des etats complexes, les parties imaginaires doivent s’annuler entre elles car les poles complexes et les etats complexes se produisent en paires conjuguees. Clairement, cette approche standard applique un grand nombre d'operations triviales et redondantes et inefficace. L’alternative proposee dans cette these est la manipulation de toutes les variables d’etat en arithmetique reelle. Pour ce faire, deux methodologies sont developpees, implementees et testees dans cette these. La methode 1 consiste a eliminer un des etats de chacune des paires conjuguees, puisqu’il est demontre dans cette these que les deux etats transmettent la meme information. Chacun des etats complexes restants est ensuite traite comme une paire d’etats reels mutuellement couples. En faisant cela la performance numerique du modele est augmentee de presque quatre fois.----------ABSTRACT The development of a mathematical model for the electromagnetic simulation of power transmission lines and cables is described in this thesis along with its hardware and software implementation. This model is intended for real-time and accelerated-time simulation of electromagnetic transients (EMTs) occurring in power-supply networks. The developed model fills an existing gap in real-time simulation practice and, in comparison with those ones currently available to power-system analysts; it represents a substantial improvement in terms of stability and of computational-efficiency.The proposed line model is based on the Wide Band (WB) or Universal Line Model (ULM) which, because of its accuracy and generality, is widely adopted as the referent. These two features of the ULM follow from its ability to account completely and effectively for all the frequency-dependent effects of line parameters. Nevertheless, the original ULM has been reformulated and restructured here to meet the stringent requirements for real-time simulations. The structure of the new model facilitates the partition of large networks in sub-blocks that can be simulated in parallel on a multiprocessor cluster. One feature of the ULM that is preserved in the new model is the rational representation of the characteristic admittance and the propagation function matrices, both obtained directly in the phase domain by using the Vector Fitting (VF) or the Weighted Vector Fitting (WVF) software utilities. One issue requiring special consideration is the handling of the complex state variables produced by complex poles that often arise when using VF or WVF. The standard approach to this is the direct one consisting in the treating of all internal states as complex. In the case of real states, the imaginary parts simply are zeros. In the case of complex states, the imaginary parts must cancel each other since complex poles and complex states occur in conjugate pairs. Clearly, form the computational standpoint this standard approach reports a large number of trivial and redundant operations and thus, from the computational standpoint, it is deemed here as highly inefficient. The alternative proposed in this thesis is the handling of all state variables in real Arithmetic. Two methods for doing this are developed, implemented and tested in this thesis.

[1]  A.M. Gole,et al.  Robust Passivity Enforcement Scheme for Time-Domain Simulation of Multi-Conductor Transmission Lines and Cables , 2010, IEEE Transactions on Power Delivery.

[2]  C. Dufour,et al.  A Wideband Line/Cable Model for Real-Time Simulations of Power System Transients , 2012, IEEE Transactions on Power Delivery.

[3]  T. Sarkar,et al.  Analysis of Multiconductor Transmission Lines , 1988, 31st ARFTG Conference Digest.

[4]  B. Gustavsen Passivity Enforcement for Transmission Line Models Based on the Method of Characteristics , 2008, IEEE Transactions on Power Delivery.

[5]  A. S. Morched,et al.  A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables , 1999 .

[6]  Luis Marti Simulation of electromagnetic transients in underground cables with frequency-dependent modal transformation matrics , 1986 .

[7]  Hoang Le-Huy,et al.  Real-time simulation of power transmission lines using Marti model with optimal fitting on dual-DSP card , 1996 .

[8]  O. Ramos-Leanos,et al.  Improving computational efficiency of FD line model for real-time simulation of emts , 2010, North American Power Symposium 2010.

[9]  Michel S. Nakhla,et al.  Passivity verification in delay-based macromodels of electrical interconnects , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  I. Kocar,et al.  Improvement of Numerical Stability for the Computation of Transients in Lines and Cables , 2010, IEEE Transactions on Power Delivery.

[11]  Jean Belanger,et al.  eMEGAsim: An Open High-Performance Distributed Real-Time Power Grid Simulator. Architecture and Specification , 2007 .

[12]  Jean Mahseredjian,et al.  A combined state-space nodal method for the simulation of power system transients , 2011, 2011 IEEE Power and Energy Society General Meeting.

[13]  L. M. Wedepohl Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems , 1963 .

[14]  A. Semlyen,et al.  Rational approximation of frequency domain responses by vector fitting , 1999 .

[15]  O. Ramos-Leanos,et al.  Wide-band line model implementation in Matlab for EMT Analysis , 2010, North American Power Symposium 2010.

[16]  I. Kocar,et al.  Weighting Method for Transient Analysis of Underground Cables , 2008, IEEE Transactions on Power Delivery.

[18]  S. O. Rice,et al.  Steady state solutions of transmission line equations , 1941 .

[19]  R. Kuffel,et al.  A real-time transmission line model for a digital TNA , 1996 .

[20]  Hermann W. Dommel,et al.  Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks , 1969 .

[21]  J. Martí,et al.  Accuarte Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulations , 1982, IEEE Transactions on Power Apparatus and Systems.

[22]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[23]  Jean Mahseredjian,et al.  On a new approach for the simulation of transients in power systems , 2007 .

[24]  R. Achar,et al.  Stability, Causality, and Passivity in Electrical Interconnect Models , 2007, IEEE Transactions on Advanced Packaging.

[25]  D. E. Hedman,et al.  Propagation on Overhead Transmission Lines I-Theory of Modal Analysis , 1965 .

[27]  Jean Mahseredjian,et al.  Improving the numerical performance of transmission line models in EMTP , 2011 .

[28]  R. H. Galloway,et al.  Calculation of electrical parameters for short and long polyphase transmission lines , 1964 .

[29]  R. M. Mathur,et al.  Real-Time Digital Simulator of the Electromagnetic Transients of Power Transmission Lines , 1989, IEEE Power Engineering Review.

[30]  J. A. Gutierrez-Robles,et al.  An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients , 2012 .

[31]  Jean Mahseredjian,et al.  An Advanced Real-Time Electro-Magnetic Simulator for power systems with a simultaneous state-space nodal solver , 2010, 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA).

[32]  L. M. Wedepohl,et al.  Frequency-dependent transformation matrices for untransposed transmission lines using Newton-Raphson method , 1996 .

[33]  Tom Dhaene,et al.  Broadband macromodelling of passive components using orthonormal vector fitting , 2005 .

[34]  J. Martí,et al.  Analytical validation of time‐step interpolation in transient insular nodal analysis , 2008 .

[35]  L. M. Wedepohl Electrical characteristics of polyphase transmission systems with special reference to boundary-value calculations at power-line carrier frequencies , 1965 .

[36]  W.H. Wise,et al.  Propagation of High-Frequency Currents in Ground Return Circuits , 1934, Proceedings of the Institute of Radio Engineers.

[37]  F. Marcano Modelling of transmission lines using idempotent decomposition , 1996 .