Single atom quantum walk with 1D optical superlattices

A proposal for the implementation of quantum walks using cold atom technology is presented. It consists of one atom trapped in time varying optical superlattices. The required elements are presented in detail including the preparation procedure, the manipulation required for the quantum walk evolution and the final measurement. These procedures can be, in principle, implemented with present technology. § Reviewing of this paper was handled by a Member of the Editorial Board.

[1]  S. Rolston,et al.  A lattice of double wells for manipulating pairs of cold atoms. , 2006, cond-mat/0602103.

[2]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[3]  M. d’Arcy,et al.  Quantum random walks using quantum accelerator modes , 2005, physics/0508182.

[4]  P. Grangier,et al.  Controlled Single-Photon Emission from a Single Trapped Two-Level Atom , 2005, Science.

[5]  J. Pachos,et al.  Graph-state preparation and quantum computation with global addressing of optical lattices , 2005, quant-ph/0501166.

[6]  Antoine Browaeys,et al.  Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator , 2004 .

[7]  D. Jaksch,et al.  Optical lattices, ultracold atoms and quantum information processing , 2004, quant-ph/0407048.

[8]  J. Pachos,et al.  Quantum computation in optical lattices via global laser addressing , 2004, quant-ph/0406073.

[9]  P. Ribeiro,et al.  Aperiodic quantum random walks. , 2004, Physical review letters.

[10]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[11]  J. Cirac,et al.  Ensemble quantum computation with atoms in periodic potentials. , 2004, Physical review letters.

[12]  P. Knight,et al.  Quantum gates and decoherence , 2004, quant-ph/0403152.

[13]  O. Biham,et al.  One-dimensional quantum walk with unitary noise , 2003, quant-ph/0309063.

[14]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[15]  B. King,et al.  Patterned loading of a Bose-Einstein condensate into an optical lattice , 2003 .

[16]  P. Knight,et al.  Quantum walk on the line as an interference phenomenon , 2003, quant-ph/0304201.

[17]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[18]  W. Dur,et al.  Quantum walks in optical lattices , 2002, quant-ph/0207137.

[19]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[20]  T. D. Mackay,et al.  Quantum walks in higher dimensions , 2001, quant-ph/0108004.

[21]  P. Maunz,et al.  Trapping an atom with single photons , 2000, Nature.

[22]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[23]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[24]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .