EnCOUNTer: a parsing tool to uncover the mature N-terminus of organelle-targeted proteins in complex samples

[1]  J. Berger,et al.  The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance , 2015, Front. Physiol..

[2]  A. Schlosser,et al.  Fragment ion patchwork quantification for measuring site-specific acetylation degrees. , 2015, Analytical chemistry.

[3]  K. V. van Wijk,et al.  The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability1[OPEN] , 2015, Plant Physiology.

[4]  M. Reichelt,et al.  Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis , 2015, Nature Communications.

[5]  T. Meinnel,et al.  N-terminal protein modifications: Bringing back into play the ribosome. , 2015, Biochimie.

[6]  Alvaro Sebastian Vaca Jacome,et al.  N‐terminome analysis of the human mitochondrial proteome , 2015, Proteomics.

[7]  W. Bienvenut,et al.  Proteome‐wide analysis of the amino terminal status of Escherichia coli proteins at the steady‐state and upon deformylation inhibition , 2015, Proteomics.

[8]  R. Hell,et al.  Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling , 2015, Proteomics.

[9]  K. Tomii,et al.  MitoFates: Improved Prediction of Mitochondrial Targeting Sequences and Their Cleavage Sites , 2015, Molecular & Cellular Proteomics.

[10]  Sharon Yang,et al.  Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events , 2014, Nucleic Acids Res..

[11]  Allan Stensballe,et al.  Condenser: a statistical aggregation tool for multi-sample quantitative proteomic data from Matrix Science Mascot Distiller™. , 2014, Journal of proteomics.

[12]  D. Sumpton,et al.  Influence of various endogenous and artefact modifications on large-scale proteomics analysis. , 2013, Rapid communications in mass spectrometry : RCM.

[13]  S. Theg,et al.  The chloroplast protein import system: from algae to trees. , 2013, Biochimica et biophysica acta.

[14]  W. Majeran,et al.  Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. , 2013, Journal of proteome research.

[15]  N. Rolland,et al.  AT_CHLORO: A Chloroplast Protein Database Dedicated to Sub-Plastidial Localization , 2012, Front. Plant Sci..

[16]  J. V. van Dijl,et al.  Membrane Proteases in the Bacterial Protein Secretion and Quality Control Pathway , 2012, Microbiology and Molecular Reviews.

[17]  Thierry Meinnel,et al.  Comparative Large Scale Characterization of Plant versus Mammal Proteins Reveals Similar and Idiosyncratic N-α-Acetylation Features* , 2012, Molecular & Cellular Proteomics.

[18]  W. Bienvenut,et al.  Dynamics of post‐translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts , 2011, Proteomics.

[19]  W. Gruissem,et al.  MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data1[C][OA] , 2010, Plant Physiology.

[20]  E. Schleiff,et al.  Chloroplast import signals: the length requirement for translocation in vitro and in vivo. , 2010, Journal of molecular biology.

[21]  J. Garin,et al.  AT_CHLORO, a Comprehensive Chloroplast Proteome Database with Subplastidial Localization and Curated Information on Envelope Proteins* , 2010, Molecular & Cellular Proteomics.

[22]  K. Gevaert,et al.  Improved visualization of protein consensus sequences by iceLogo , 2009, Nature Methods.

[23]  A. Millar,et al.  Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs1[W][OA] , 2009, Plant Physiology.

[24]  Qi Sun,et al.  PPDB, the Plant Proteomics Database at Cornell , 2008, Nucleic Acids Res..

[25]  P. Jarvis Targeting of nucleus-encoded proteins to chloroplasts in plants. , 2008, The New phytologist.

[26]  O. Emanuelsson,et al.  Sorting Signals, N-Terminal Modifications and Abundance of the Chloroplast Proteome , 2008, PloS one.

[27]  D. Grunwald,et al.  Toc159- and Toc75-independent Import of a Transit Sequence-less Precursor into the Inner Envelope of Chloroplasts* , 2007, Journal of Biological Chemistry.

[28]  N. Patron,et al.  Transit peptide diversity and divergence: A global analysis of plastid targeting signals. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[29]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[30]  D. Thiele,et al.  Higher plants possess two different types of ATX1-like copper chaperones. , 2007, Biochemical and biophysical research communications.

[31]  A. Millar,et al.  Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria , 2006, Plant Molecular Biology.

[32]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[33]  Kathryn S Lilley,et al.  Identification of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Proteomic and Genomic Analysis1 , 2003, Plant Physiology.

[34]  I. Hwang,et al.  Rha1, an Arabidopsis Rab5 Homolog, Plays a Critical Role in the Vacuolar Trafficking of Soluble Cargo Proteins Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009779. , 2003, The Plant Cell Online.

[35]  W. Rutter,et al.  Converting trypsin to chymotrypsin: the role of surface loops. , 1992, Science.

[36]  B. Keil,et al.  Proteolytic activity of pseudotrypsin , 1971, FEBS letters.

[37]  A. Berger,et al.  On the size of the active site in proteases. I. Papain. , 1967, Biochemical and biophysical research communications.

[38]  Julian Tonti-Filippini,et al.  SUBA: the Arabidopsis Subcellular Database , 2007 .

[39]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[40]  Wen Huang,et al.  The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant , 2001, Nucleic Acids Res..

[41]  G. Heijne,et al.  ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites , 1999, Protein science : a publication of the Protein Society.