An Iterative Multiarea State Estimation Approach Using Area Slack Bus Adjustment

This paper proposes a new multiarea state estimation (MASE) approach, which estimates the overall system states by utilizing the state estimation (SE) results of the subareas iteratively. In this approach, all the subareas run their SE sequentially in each iteration. The SE results of the boundary buses in a subarea are used as pseudomeasurements for running the SEs of the nearby subareas. An area slack bus angle adjustment approach has been utilized for estimating the bus angles of the overall system with reference to the global slack bus. It has been demonstrated that the use of the subarea SE results, as pseudomeasurements, provides better state estimates for the complete system. The effectiveness of the proposed method has been demonstrated on an IEEE 30-bus system and a 246-bus reduced Northern Regional Power Grid Indian system.

[1]  H. Poor,et al.  Fully Distributed State Estimation for Wide-Area Monitoring Systems , 2012, IEEE Transactions on Smart Grid.

[2]  Xiao-Ping Zhang,et al.  Coordinated algorithms for distributed state estimation with synchronized phasor measurements , 2012 .

[3]  Arindam Ghosh,et al.  Inclusion of PMU current phasor measurements in a power system state estimator , 2010 .

[4]  Catalina Gomez-Quiles,et al.  Equality-constrained bilinear state estimation , 2013, IEEE Transactions on Power Systems.

[5]  A. Abur,et al.  Multi area state estimation using synchronized phasor measurements , 2005, IEEE Transactions on Power Systems.

[6]  A. G. Expósito,et al.  Power system state estimation : theory and implementation , 2004 .

[7]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part II: Approximate Model , 1970 .

[8]  A.J. Conejo,et al.  An Optimization Approach to Multiarea State Estimation , 2007, IEEE Transactions on Power Systems.

[9]  Liam Murphy,et al.  Parallel and distributed state estimation , 1995 .

[10]  Elias Kyriakides,et al.  Synchronized measurements in power system operation: International trends and research , 2010, IEEE PES General Meeting.

[11]  A.G. Phadke,et al.  An Alternative for Including Phasor Measurements in State Estimators , 2006, IEEE Transactions on Power Systems.

[12]  Ali Reza Seifi,et al.  A new coordinated approach to state estimation in integrated power systems , 2013 .

[13]  Thierry Van Cutsem,et al.  A taxonomy of multi-area state estimation methods , 2011 .

[14]  E. Iso,et al.  Measurement Uncertainty and Probability: Guide to the Expression of Uncertainty in Measurement , 1995 .

[15]  G.T. Heydt,et al.  A Distributed State Estimator Utilizing Synchronized Phasor Measurements , 2007, IEEE Transactions on Power Systems.

[16]  Antonio Gómez Expósito,et al.  A Multilevel State Estimation Paradigm for Smart Grids , 2011, Proceedings of the IEEE.

[17]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[18]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part III: Implementation , 1970 .

[19]  J. Nieplocha,et al.  A decomposed state estimation technique suitable for parallel processor implementation , 1992 .

[20]  Vahid Madani,et al.  Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks , 2011, Proceedings of the IEEE.

[21]  Sri Niwas Singh,et al.  Synchrophasor Assisted Adaptive Reach Setting of Distance Relays in Presence of UPFC , 2011, IEEE Systems Journal.

[22]  Georgios B. Giannakis,et al.  Distributed Robust Power System State Estimation , 2012, IEEE Transactions on Power Systems.

[23]  M. Ribbens-Pavella,et al.  A Two-Level Static State Estimator for Electric Power Systems , 1981, IEEE Transactions on Power Apparatus and Systems.

[24]  J. Thorp,et al.  State Estimation with Phasor Measurements , 1986, IEEE Power Engineering Review.

[25]  Seema Singh,et al.  Phasor-assisted Hybrid State Estimator , 2010 .

[26]  George N Korres,et al.  A Distributed Multiarea State Estimation , 2011, IEEE Transactions on Power Systems.

[27]  S. Chakrabarti,et al.  Multi Area State Estimation using area slack bus angle adjustment with minimal data exchange , 2013, 2013 IEEE Power & Energy Society General Meeting.

[28]  A. Gómez-Expósito,et al.  A Factorized Approach to WLS State Estimation , 2011, IEEE Transactions on Power Systems.

[29]  G. T. Heydt,et al.  A Linear State Estimation Formulation for Smart Distribution Systems , 2013, IEEE Transactions on Power Systems.

[30]  J. S. Thorp,et al.  State Estimlatjon with Phasor Measurements , 1986, IEEE Transactions on Power Systems.

[31]  Anjan Bose,et al.  Transition to a Two-Level Linear State Estimator—Part II: Algorithm , 2011, IEEE Transactions on Power Systems.