Probabilistic Information Flow

In recent years, there has been a growing interest in considering the probabilistic aspects of Information Flow. In this abstract we review some of the main approaches that have been considered to quantify the notion of information leakage, and we focus on some recent developments.

[1]  Paul Syverson,et al.  Quasi-Anonymous Channels , 2003 .

[2]  David A. Basin,et al.  An information-theoretic model for adaptive side-channel attacks , 2007, CCS '07.

[3]  Michael K. Reiter,et al.  Crowds: anonymity for Web transactions , 1998, TSEC.

[4]  Steve A. Schneider,et al.  CSP and Anonymity , 1996, ESORICS.

[5]  David Clark,et al.  Quantitative Information Flow, Relations and Polymorphic Types , 2005, J. Log. Comput..

[6]  Mário S. Alvim,et al.  Information Flow in Interactive Systems , 2010, CONCUR.

[7]  Mark Ryan,et al.  Verifying privacy-type properties of electronic voting protocols , 2009, J. Comput. Secur..

[8]  Martin E. Hellman,et al.  Probability of error, equivocation, and the Chernoff bound , 1970, IEEE Trans. Inf. Theory.

[9]  Martín Abadi,et al.  A Calculus for Cryptographic Protocols: The spi Calculus , 1999, Inf. Comput..

[10]  Gethin Norman,et al.  Bisimulation for Demonic Schedulers , 2009, FoSSaCS.

[11]  Prakash Panangaden,et al.  Anonymity protocols as noisy channels , 2006, Inf. Comput..

[12]  Riccardo Bettati,et al.  Anonymity vs. Information Leakage in Anonymity Systems , 2005, 25th IEEE International Conference on Distributed Computing Systems (ICDCS'05).

[13]  Catuscia Palamidessi,et al.  Making Random Choices Invisible to the Scheduler , 2007, CONCUR.

[14]  Imre Csiszár Generalized cutoff rates and Renyi's information measures , 1995, IEEE Trans. Inf. Theory.

[15]  Ira S. Moskowitz,et al.  Covert channels and anonymizing networks , 2003, WPES '03.

[16]  Alexander Vardy,et al.  On an Improvement over Rényi's Equivocation Bound , 2006, ArXiv.

[17]  Christian Cachin,et al.  Entropy measures and unconditional security in cryptography , 1997 .

[18]  John O. Pliam On the Incomparability of Entropy and Marginal Guesswork in Brute-Force Attacks , 2000, INDOCRYPT.

[19]  Pasquale Malacaria,et al.  Lagrange multipliers and maximum information leakage in different observational models , 2008, PLAS '08.

[20]  J. Massey Guessing and entropy , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[21]  Mário S. Alvim,et al.  Safe Equivalences for Security Properties , 2010, IFIP TCS.

[22]  Frank Stajano,et al.  The Cocaine Auction Protocol: On the Power of Anonymous Broadcast , 1999, Information Hiding.

[23]  Ana Sokolova,et al.  Information Hiding in Probabilistic Concurrent Systems , 2010, 2010 Seventh International Conference on the Quantitative Evaluation of Systems.

[24]  RyanMark,et al.  Verifying privacy-type properties of electronic voting protocols , 2009 .

[25]  Geoffrey Smith,et al.  On the Foundations of Quantitative Information Flow , 2009, FoSSaCS.

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  Radha Jagadeesan,et al.  The metric analogue of weak bisimulation for probabilistic processes , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[28]  David Chaum,et al.  The dining cryptographers problem: Unconditional sender and recipient untraceability , 1988, Journal of Cryptology.

[29]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[30]  Pasquale Malacaria,et al.  Assessing security threats of looping constructs , 2007, POPL '07.

[31]  Prakash Panangaden,et al.  On the Bayes risk in information-hiding protocols , 2008, J. Comput. Secur..

[32]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.