On Euclidean Corrections for Non-Euclidean Dissimilarities
暂无分享,去创建一个
Wan-Jui Lee | Horst Bunke | Robert P. W. Duin | Elzbieta Pekalska | Artsiom Harol | H. Bunke | R. Duin | E. Pekalska | Wan-Jui Lee | A. Harol
[1] J. Gower,et al. Metric and Euclidean properties of dissimilarity coefficients , 1986 .
[2] Horst Bunke,et al. Non-Euclidean or Non-metric Measures Can Be Informative , 2006, SSPR/SPR.
[3] R. Duin,et al. The dissimilarity representation for pattern recognition , a tutorial , 2009 .
[4] Edwin R. Hancock,et al. Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Horst Bunke,et al. A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..
[6] Azriel Rosenfeld,et al. Progress in pattern recognition , 1985 .
[7] Horst Bunke,et al. On Not Making Dissimilarities Euclidean , 2004, SSPR/SPR.
[8] N. JARDINE,et al. A New Approach to Pattern Recognition , 1971, Nature.
[9] Daphna Weinshall,et al. Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[10] Fan Chung,et al. Spectral Graph Theory , 1996 .
[11] Robert P. W. Duin,et al. The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.
[12] Bernard Haasdonk,et al. Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Edwin R. Hancock,et al. String Edit Distance, Random Walks And Graph Matching , 2004, Int. J. Pattern Recognit. Artif. Intell..
[14] Horst Bunke,et al. Syntactic and structural pattern recognition : theory and applications , 1990 .
[15] Isaac Martín de Diego,et al. From Indefinite to Positive Semi-Definite Matrices , 2006, SSPR/SPR.
[16] Edwin R. Hancock,et al. Computing approximate tree edit distance using relaxation labeling , 2003, Pattern Recognit. Lett..
[17] Gabriela Andreu,et al. Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recognition , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).