On Euclidean Corrections for Non-Euclidean Dissimilarities

Non-Euclidean dissimilarity measures can be well suited for building representation spaces that are more beneficial for pattern classification systems than the related Euclidean ones [1,2]. A non-Euclidean representation space is however cumbersome for training classifiers, as many statistical techniques rely on the Euclidean inner product that is missing there. In this paper we report our findings on the applicability of corrections that transform a non-Euclidean representation space into a Euclidean one in which similar or better classifiers can be trained. In a case-study based on four principally different classifiers we find out that standard correction procedures fail to construct an appropriate Euclidean space, equivalent to the original non-Euclidean one.

[1]  J. Gower,et al.  Metric and Euclidean properties of dissimilarity coefficients , 1986 .

[2]  Horst Bunke,et al.  Non-Euclidean or Non-metric Measures Can Be Informative , 2006, SSPR/SPR.

[3]  R. Duin,et al.  The dissimilarity representation for pattern recognition , a tutorial , 2009 .

[4]  Edwin R. Hancock,et al.  Pattern Vectors from Algebraic Graph Theory , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[6]  Azriel Rosenfeld,et al.  Progress in pattern recognition , 1985 .

[7]  Horst Bunke,et al.  On Not Making Dissimilarities Euclidean , 2004, SSPR/SPR.

[8]  N. JARDINE,et al.  A New Approach to Pattern Recognition , 1971, Nature.

[9]  Daphna Weinshall,et al.  Classification with Nonmetric Distances: Image Retrieval and Class Representation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[11]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[12]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Edwin R. Hancock,et al.  String Edit Distance, Random Walks And Graph Matching , 2004, Int. J. Pattern Recognit. Artif. Intell..

[14]  Horst Bunke,et al.  Syntactic and structural pattern recognition : theory and applications , 1990 .

[15]  Isaac Martín de Diego,et al.  From Indefinite to Positive Semi-Definite Matrices , 2006, SSPR/SPR.

[16]  Edwin R. Hancock,et al.  Computing approximate tree edit distance using relaxation labeling , 2003, Pattern Recognit. Lett..

[17]  Gabriela Andreu,et al.  Selecting the toroidal self-organizing feature maps (TSOFM) best organized to object recognition , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).