Subsequences of automatic sequences indexed by ⌊nc⌋ and correlations

The main goal of this paper is to study the behavior of subsequences uc={u(⌊nc⌋):n∈N} of automatic sequences u that are indexed by ⌊nc⌋ for some c>1. In particular we show that the densities of the letters of uc are precisely the same as those of the original sequence (provided that c<7/5). In this sense uc and u behave in the same way. However, the pair correlation might be completely different as we will show in the special case of the Thue–Morse sequence. The proofs use exponential sum estimates like the double large sieve and a discrete Fourier analysis related to automatic sequences.

[1]  Alan Cobham,et al.  Uniform tag sequences , 1972, Mathematical systems theory.

[2]  Christian Mauduit,et al.  La somme des chiffres des carrés , 2009 .

[3]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[4]  A. Salzberg,et al.  Exact Statistical Thermodynamics of Gravitational Interactions in One and Two Dimensions , 1965 .

[5]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[6]  Norbert Wiener,et al.  The Spectrum of an Array and its Application to the Study of the Translation Properties of a Simple Class of Arithmetical Functions: Part One The Spectrum of an Array , 1927 .

[7]  S. Min On the Order of ?(1/2+it) , 1949 .

[8]  Christian Mauduit,et al.  Répartition des fonctions q-multiplicatives dans la suite $([n^c])_{n∈ ℕ}$, c > 1 , 1995 .

[9]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[10]  Christian Mauduit,et al.  Sur un problème de Gelfond: la somme des chiffres des nombres premiers , 2010 .

[11]  Manfred Peter The asymptotic distribution of elements in automatic sequences , 2003, Theor. Comput. Sci..

[12]  M. Keane,et al.  Generalized Morse sequences , 1968 .

[13]  Christian Mauduit,et al.  Propriétés q-multiplicatives de la suite \lfloor n c \rfloor, c>1 , 2005 .

[14]  András Sárközy,et al.  On Finite Pseudorandom Binary Sequences: II. The Champernowne, Rudin–Shapiro, and Thue–Morse Sequences, A Further Construction , 1998 .

[15]  Grigori Kolesnik,et al.  Van der Corput's method of exponential sums , 1991 .

[16]  Joël Rivat,et al.  Primes of the form [pc] and related questions , 1995, Glasgow Mathematical Journal.

[17]  Christian Maudutt,et al.  Multiplicative properties of the Thue-Morse sequence , 2002, Period. Math. Hung..

[18]  J. Vaaler SOME EXTREMAL FUNCTIONS IN FOURIER ANALYSIS , 2007 .

[19]  H. Iwaniec,et al.  On the order of $\zeta (\frac{1}{2} + it)$ , 1986 .

[20]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[21]  Johannes F. Morgenbesser,et al.  Generalized Thue-Morse sequences of squares , 2012 .

[22]  K. Mahler,et al.  The Spectrum of an Array and its Application to the Study of the Translation Properties of a Simple Class of Arithmetical Functions: Part Two On the Translation Properties of a Simple Class of Arithmetical Functions , 1927 .

[23]  Johannes F. Morgenbesser The sum of digits of $\lfloor n^c\rfloor$ , 2011 .