Optimal Reactive Power Dispatch using Improved Differential Evolution Algorithm

Reactive power dispatch plays a key role in secure and economic operation of power systems. Optimal reactive power dispatch (ORPD) is a non-linear optimization problem which includes both continues and discrete variables. Due to complex characteristics, heuristic and evolutionary based optimization approaches have became effective tools to solve the ORPD problem. In this paper a new optimization approach based on improved differential evolution (IDE) has been proposed to solve the ORPD problem. IDE is an improved version of differential evolution optimization algorithm in which new solutions are produced in respect to global best solution. In the proposed approach, IDE determines the optimal combination of control variables including generator voltages, transformer taps and setting of VAR compensation devices to obtain minimum real power losses. In order to demonstrate the applicability and efficiency of the proposed IDE based approach, it has been tested on the IEEE 14 and 57-bus test systems and obtained results are compared with those obtained using other existing methods. Simulation results show that the proposed approach is superior to the other existing methods. الأمثل قوة رد الفعل DISPATCH عن طريق تحسن التفاضلية تطور الخوارزمية رد الفعل ارسال قوة يلعب دورا رئيسيا في عملية آمنة والاقتصادية لأنظمة الطاقة. الأمثل على رد الفعل ارسال قوة (ORPD) هو الحل الأمثل لغير الخطي الذي يشمل كلا من تواصل والمتغيرات المنفصلة. نظرا لخصائص معقدة، وأصبح النهج الأمثل الكشف عن مجريات الأمور والتطور على أساس أدوات فعالة لحل مشكلة ORPD. في هذه الورقة تم اقتراح نهج التحسين جديد يقوم على تحسين تطور التفاضلية (IDE) على حل مشكلة ORPD. IDE هو نسخة محسنة من التفاضلية خوارزمية التطور الأمثل الذي يتم إنتاج حلول جديدة فيما يتعلق أفضل حل عالمي. في النهج المقترح، يحدد IDE الجمع الأمثل للمتغيرات بما في ذلك مراقبة الفولتية مولد والصنابير المحولات ووضع أجهزة تعويض VAR للحصول على الحد الأدنى من الخسائر السلطة الحقيقية. من أجل إثبات إمكانية تطبيق وكفاءة نهج IDE على أساس المقترح، وقد تم اختباره على أنظمة اختبار IEEE 14 و 57 باص وحصل تتم مقارنة النتائج مع تلك التي تم الحصول عليها باستخدام طرق أخرى موجودة. وتبين نتائج المحاكاة أن النهج المقترح متفوقة على الطرق الأخرى القائمة.

[1]  A. G. Bakirtzis,et al.  Incorporation of Switching Operations in Power System Corrective Control Computations , 1987, IEEE Transactions on Power Systems.

[2]  Kenichi Aoki,et al.  Optimal VAr planning by approximation method for recursive mixed-integer linear programming , 1988 .

[3]  M. Kalantar,et al.  Optimal reactive power dispatch based on harmony search algorithm , 2011 .

[4]  Chun-Chang Liu,et al.  A new approach for optimal VAr sources planning in large scale electric power systems , 1993 .

[5]  T. Saravanan,et al.  Optimal Power Flow Using Particle Swarm Optimization , 2014 .

[6]  Mohammad Ali Abido,et al.  Differential evolution algorithm for optimal reactive power dispatch , 2011 .

[7]  Chaohua Dai,et al.  Seeker Optimization Algorithm for Optimal Reactive Power Dispatch , 2009, IEEE Transactions on Power Systems.

[8]  Jacob Østergaard,et al.  Reactive power and voltage control based on general quantum genetic algorithms , 2009, Expert Syst. Appl..

[9]  Xianzhong Duan,et al.  Study of differential evolution for optimal reactive power flow , 2007 .

[10]  G. Lambert-Torres,et al.  A hybrid particle swarm optimization applied to loss power minimization , 2005, IEEE Transactions on Power Systems.

[11]  P. Subbaraja,et al.  Optimal reactive power dispatch using self-adaptive real coded genetic algorithm , 2016 .

[12]  Y.-Y. Hsu,et al.  Reactive power/voltage control in a distribution substation using dynamic programming , 1995 .

[13]  Q. H. Wu,et al.  Power system optimal reactive power dispatch using evolutionary programming , 1995 .

[14]  João Tomé Saraiva,et al.  Bid-based coupled active/reactive dispatch using simulated annealing , 2004 .

[15]  Taher Niknam,et al.  A modified shuffle frog leaping algorithm for multi-objective optimal power flow , 2011 .

[16]  K. S. Swarup,et al.  Differential evolutionary algorithm for optimal reactive power dispatch , 2008 .

[17]  W. Tinney,et al.  Optimal Power Flow By Newton Approach , 1984, IEEE Transactions on Power Apparatus and Systems.

[18]  K. Lee,et al.  A United Approach to Optimal Real and Reactive Power Dispatch , 1985, IEEE Transactions on Power Apparatus and Systems.

[19]  Abbas Rabiee,et al.  Optimal reactive power dispatch for improving voltage stability margin using a local voltage stability index , 2012 .

[20]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 2000 .

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Ashish Saini,et al.  Multi-objective optimal reactive power dispatch considering voltage stability in power systems using HFMOEA , 2013, Eng. Appl. Artif. Intell..

[23]  S. M. Shahidehpour,et al.  Linear reactive power optimization in a large power network using the decomposition approach , 1990 .

[24]  David Sun,et al.  Multi-year multi-case optimal VAR planning , 1990 .

[25]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[26]  G.A. Bakare,et al.  Reactive power and voltage control of the Nigerian grid system using micro-genetic algorithm , 2005, IEEE Power Engineering Society General Meeting, 2005.

[27]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .