N-heterocyclic phosphenium cations: syntheses and cycloaddition reactions.

A series of trifluoromethanesulfonate (OTf) salts of N-heterocyclic phospheniums (NHP) bearing phenyl (1a), para-methoxyphenyl (1b), 2,6-diisopropylphenyl (1c) and mesityl (1d) substituents is reported. The compounds are made by a modification to a literature procedure that improves the overall yields for and by 15 and 23%, respectively. Two unwanted side-products in the synthesis of , the diammonium salt, [(2,6-iPr-C6H3)N(H)2CH2CH2N(H)2(2,6-iPr-C6H3)]Cl2 (4) and the bisphosphine (2,6-iPr-C6H3)N(PCl2)CH2CH2N(PCl2)(2,6-iPr-C6H3) (5), are crystallographically characterized, as is the intermediate cyclic chlorophosphine, C1PN(4-OMe-C6H4)CH2CH2N(4-OMe-C6H4) (3b). The phenyl-substituted NHP is fully characterized, including by X-ray crystallography, for the first time; this compound contains a short P-O contact of 2.1850(14) A. Cycloaddition reactions of with 2,3-dimethyl-1,3-butadiene give the expected spirocyclic phospholeniums, 7,8-dimethyl-1,4-diaryl-1,4-diaza-5-phopshoniaspiro[4.4]non-7-ene, as their OTf salts (6a-d), while reactions with N,N'-dimesityl-1,4-diaza-1,3-butadiene give, except in the case of , which is too bulky to react, the aza analogues, 1,4-dimesityl-6,9-diaryl-1,4,6,9-tetraaza-5-phosphoniaspiro[4.4]non-2-ene (7a, 7b and 7d). The sterically congested is in thermal equilibrium with and free diazadiene, and undergoes a substitution reaction with 2,3-dimethyl-1,3-butadiene to give .

[1]  Paul J Ragogna,et al.  Electronic structures of main-group carbene analogues. , 2007, Inorganic chemistry.

[2]  M. Nieger,et al.  2-Chloro-1,3,2-diazaphospholenes – A Crystal Structural Study , 2007 .

[3]  G. DiLabio,et al.  Diamidonaphthalene-Stabilized N-Heterocyclic Pnictogenium Cations and Their Cation−Cation Solid-State Interactions , 2007 .

[4]  Gregor Reeske,et al.  One-step redox route to N-heterocyclic phosphenium ions. , 2007, Inorganic chemistry.

[5]  C. L. Macdonald,et al.  Cycloaddition and electron transfer: On a synthetically useful aspect of pnictogen(I) reactivity , 2007 .

[6]  K. Takano,et al.  Syntheses, Structures, and DFT Calculations of Phosphenium Phosphite Complexes of Molybdenum: Preference of Nonbridging Form to Bridging Form of a Donor Group , 2006 .

[7]  G. DiLabio,et al.  Construction of a stable N-heterocyclic phosphenium cation with an electron-rich framework and its complexation to rhodium , 2006 .

[8]  Gregor Reeske,et al.  Capture of phosphorus(I) and arsenic(I) moieties by a 1,2-bis(arylimino)acenaphthene (aryl-BIAN) ligand. A case of intramolecular charge transfer. , 2006, Journal of the American Chemical Society.

[9]  Jianguo Mei,et al.  Modified (NHC)Pd(allyl)Cl (NHC = N-heterocyclic carbene) complexes for room-temperature Suzuki-Miyaura and Buchwald-Hartwig reactions. , 2006, Journal of the American Chemical Society.

[10]  M. Nieger,et al.  N-Heterocyclic Phosphenium, Arsenium, and Stibenium Ions as Ligands in Transition Metal Complexes: A Comparative Experimental and Computational Study† , 2005 .

[11]  M. Yamashita,et al.  An efficient Pd(II)-based catalyst system for carboxylation of aromatic C–H bond by addition of a phosphenium salt , 2005 .

[12]  H. Nakazawa Transition Metal Complexes Bearing a Phosphenium Ligand , 2004 .

[13]  G. Kubas,et al.  Molecular and electronic structure of platinum bis(N-arylamino)phosphenium complexes including [Pt(phosphane)(phosphenium)(N-heterocyclic carbene)]. , 2004, Angewandte Chemie.

[14]  Andrew D. Phillips,et al.  Transformations between monomeric, dimeric, and trimeric phosphazanes: oligomerizing NP analogues of olefins. , 2002, Journal of the American Chemical Society.

[15]  D. Bourissou,et al.  A crystalline phosphenium salt featuring the electron-withdrawing 2,6-bis(trifluoromethyl)phenyl group , 2002 .

[16]  W. Herrmann N-heterocyclic carbenes: a new concept in organometallic catalysis. , 2002, Angewandte Chemie.

[17]  T. Kee,et al.  Electronic effects on the acidity of phosphorus(III) triflates , 2002 .

[18]  M. Nieger,et al.  Complexes with phosphorus analogues of imidazoyl carbenes: unprecedented formation of phosphenium complexes by coordination induced PCl bond heterolysis , 2001 .

[19]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[20]  M. Abrams,et al.  Sterically Tunable Phosphenium Cations: Synthesis and Characterization of Bis(arylamino)phosphenium Ions, Phosphinophosphenium Adducts, and the First Well-Defined Rhodium Phosphenium Complexes , 2000 .

[21]  H. Nakazawa The chemistry of transition metal complexes containing a phosphenium ligand , 2000 .

[22]  Gudat,et al.  Stability and electrophilicity of phosphorus analogues of arduengo carbenes--an experimental and computational study , 2000, Chemistry.

[23]  Anthony J. Arduengo,et al.  Looking for Stable Carbenes: The Difficulty in Starting Anew , 1999 .

[24]  J. Brunel,et al.  Synthesis of new chiral σ2λ2-phosphenium cations , 1999 .

[25]  M. Thornton-Pett,et al.  CHIRAL PHOSPHORUS(III) TRIFLATES. ON THE NATURE OF THE PHOSPHORUS-OXYGEN INTERACTION , 1998 .

[26]  R. J. Boyd,et al.  Ab Initio Studies of the Contrasting Butadiene Cheletropic and Diels−Alder Cycloaddition Reactivities Observed for “Carbenic” Phosphorus (Phosphenium) and Arsenic (Arsenium) Cations† , 1998 .

[27]  M. Thornton-Pett,et al.  Chiral phosphorus(iii) triflates , 1997 .

[28]  A. Lough,et al.  Aromatic Phosphenium Cations , 1996 .

[29]  C. L. Macdonald,et al.  Anionic and Steric Factors Governing Coordinative Unsaturation at Carbenic Phosphenium Centers , 1994 .

[30]  M. Boisdon,et al.  Synthese et proprietes de nouveaux triazaphospholes : les 5-methylthio 1,2,4,3-triazaphospholes , 1993 .

[31]  O. Diallo,et al.  Spirophosphazenes and the parent triazaphosphole : differences and similarity in chemical reactivity , 1991 .

[32]  Richard L. Harlow,et al.  A stable crystalline carbene , 1991 .

[33]  J. Jaud,et al.  SYNTHESES ET STRUCTURE CRISTALLINE DE NOUVEAUX BISDIALKYLAMINO-1,3,2-DIAZAPHOSPHOLENIUMS A PARTIR DE CATIONS PHOSPHENIUMS , 1991 .

[34]  Th. N'gando M'pondo,et al.  Composés du phosphore dicoordonné. Les bitriazaphospholes-1,2,4,3: synthèse et propriétés , 1987 .

[35]  N. C. Norman,et al.  Reactivity of Phosphenium Ions toward 1,3- and 1,4-Dienes , 1986 .

[36]  C. Malavaud,et al.  Composes du phosphore dicoordonne: Reaction de diaza-1,4 dienes-1,3 disubstitues sur les derives de diazaphosphole. Du triazaphosphole-1,2,4,3 et de precurseurs de composes du phosphore dicoordonne , 1986 .

[37]  R. Kemp,et al.  Synthesis and reaction chemistry of stable two-coordinate phosphorus cations (phosphenium ions) , 1985 .

[38]  N. C. Norman,et al.  Reaction of phosphenium ions with 1,3-dienes: a rapid synthesis of phosphorus-containing five-membered rings , 1984 .

[39]  S. Baxter,et al.  Phosphenium ions as dienophiles , 1983 .

[40]  R. Wolf,et al.  EXTENSION OF THE STAUDINGER REACTION TO THE PHOSPHENIUM CATION [—P—]+: SYNTHESIS OF A NEW CLASS OF TETRAVALENT TRICOORDINATED PHOSPHORUS CATIONS , 1982 .

[41]  Michel Sanchez,et al.  La liaison phosphazène dans quelques nouveaux iminophospholanes. Diversité de comportement réactionnel , 1982 .

[42]  B. Maryanoff,et al.  Doubly connected phosphorus cations. Diaminophosphenium ions from 2-R-2-phospha-1,3-diazacyclohexanes , 1972 .

[43]  Suzanne Fleming,et al.  Synthesis of a cyclic fluorodialkylaminophosphine and its coordination with boron acids. Formation of a unique dialkylaminophosphine cation , 1972 .