Correction: In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands

[This corrects the article DOI: 10.1371/journal.pone.0133571.].

[1]  Anna Russo,et al.  In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands , 2015, PloS one.

[2]  Gevorg Grigoryan,et al.  Computational design of selective peptides to discriminate between similar PDZ domains in an oncogenic pathway. , 2015, Journal of molecular biology.

[3]  L. Vitagliano,et al.  G-quadruplex DNA recognition by nucleophosmin: new insights from protein dissection. , 2014, Biochimica et biophysica acta.

[4]  Nir London,et al.  Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. , 2013, Current opinion in structural biology.

[5]  M. Williamson Using chemical shift perturbation to characterise ligand binding. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[6]  C. Vascotto,et al.  Role of the unstructured N-terminal domain of the hAPE1 (human apurinic/apyrimidinic endonuclease 1) in the modulation of its interaction with nucleic acids and NPM1 (nucleophosmin). , 2013, The Biochemical journal.

[7]  Z. Altintas,et al.  Computational Design of Peptide Ligands for Ochratoxin A , 2013, Toxins.

[8]  Chao Yang,et al.  Computational peptidology: a new and promising approach to therapeutic peptide design. , 2013, Current medicinal chemistry.

[9]  A. Laio,et al.  Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach. , 2012, Journal of chemical theory and computation.

[10]  Claudio N. Cavasotto,et al.  Computational and experimental studies of the interaction between phospho-peptides and the C-terminal domain of BRCA1 , 2011, J. Comput. Aided Mol. Des..

[11]  Haim J. Wolfson,et al.  PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors , 2011, Bioinform..

[12]  Ora Schueler-Furman,et al.  Identification of a Novel Class of Farnesylation Targets by Structure-Based Modeling of Binding Specificity , 2011, PLoS Comput. Biol..

[13]  Ora Schueler-Furman,et al.  Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions , 2011, Nucleic Acids Res..

[14]  James Andrew McCammon,et al.  Accessing a Hidden Conformation of the Maltose Binding Protein Using Accelerated Molecular Dynamics , 2011, PLoS Comput. Biol..

[15]  Xiaoqin Zou,et al.  Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. , 2010, Physical chemistry chemical physics : PCCP.

[16]  Tanja Kortemme,et al.  Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains. , 2010, Journal of molecular biology.

[17]  Alessandro Troisi,et al.  Agent-based modeling for the 2D molecular self-organization of realistic molecules. , 2010, The journal of physical chemistry. B.

[18]  Nir London,et al.  Sub‐angstrom modeling of complexes between flexible peptides and globular proteins , 2010, Proteins.

[19]  Alessandro Troisi,et al.  An artificial intelligence approach for modeling molecular self-assembly: agent-based simulations of rigid molecules. , 2009, The journal of physical chemistry. B.

[20]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[21]  G. Fields,et al.  Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. , 2009, International journal of peptide and protein research.

[22]  R. Grandori,et al.  Electrospray‐ionization mass spectrometry as a tool for fast screening of protein structural properties , 2009, Biotechnology journal.

[23]  Koichi Abe,et al.  Peptide ligand screening of α-synuclein aggregation modulators by in silico panning , 2007, BMC Bioinformatics.

[24]  Kotaro Terada,et al.  In silico panning for a non-competitive peptide inhibitor , 2007, BMC Bioinformatics.

[25]  Xavier Llorà,et al.  ENPDA: an evolutionary structure-based de novo peptide design algorithm , 2005, J. Comput. Aided Mol. Des..

[26]  Thomas Stockner,et al.  A salt-bridge motif involved in ligand binding and large-scale domain motions of the maltose-binding protein. , 2005, Biophysical journal.

[27]  Luís Carlos de Souza Ferreira,et al.  Purification and in vitro characterization of the maltose-binding protein of the plant pathogen Xanthomonas citri. , 2005, Protein expression and purification.

[28]  David J. Earl,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[29]  Yi Li,et al.  Directed evolution of human T-cell receptors with picomolar affinities by phage display , 2005, Nature Biotechnology.

[30]  Honglin Li,et al.  GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm. , 2004, Bioorganic & medicinal chemistry letters.

[31]  B. Shilton,et al.  Insights into the Conformational Equilibria of Maltose-binding Protein by Analysis of High Affinity Mutants* , 2003, Journal of Biological Chemistry.

[32]  Igor L. Medintz,et al.  A fluorescence resonance energy transfer sensor based on maltose binding protein. , 2003, Bioconjugate chemistry.

[33]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[34]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[35]  J. Tame,et al.  Crystallographic and calorimetric analysis of peptide binding to OppA protein. , 1999, Journal of molecular biology.

[36]  K. Nishikawa,et al.  Domain dislocation: a change of core structure in periplasmic binding proteins in their evolutionary history. , 1999, Journal of molecular biology.

[37]  C. Hovens,et al.  Mutagenesis and selection of PDZ domains that bind new protein targets , 1999, Nature Biotechnology.

[38]  M. Moret,et al.  Stochastic molecular optimization using generalized simulated annealing , 1998, J. Comput. Chem..

[39]  F A Quiocho,et al.  Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. , 1997, Structure.

[40]  G. Mei,et al.  Spectroscopic properties of an engineered maltose binding protein. , 1997, Protein engineering.

[41]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[42]  F. Quiocho,et al.  Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes , 1996, Molecular microbiology.

[43]  D. M. Deaven,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[44]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[45]  F. Quiocho,et al.  Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. , 1992, Biochemistry.

[46]  J. Scott,et al.  Searching for peptide ligands with an epitope library. , 1990, Science.

[47]  Michele Parrinello,et al.  Structure of sulfur clusters using simulated annealing: S2 to S13 , 1988 .

[48]  P. B. Carter,et al.  Monoclonal antibodies. Clinical uses and potential. , 1986, The Veterinary clinics of North America. Small animal practice.

[49]  F A Quiocho,et al.  Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. , 1983, The Journal of biological chemistry.

[50]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[51]  T. S. Lim,et al.  Phage Display , 2018, Methods in Molecular Biology.

[52]  M. Becker,et al.  Antibodies A Laboratory Manual , 2016 .

[53]  B Catimel,et al.  Design of inhibitors of Ras--Raf interaction using a computational combinatorial algorithm. , 2001, Protein engineering.

[54]  T. Kodadek,et al.  Selection and application of peptide-binding peptides , 2000, Nature Biotechnology.

[55]  H. Ball,et al.  Diagnostic application of monoclonal antibody (MAb)-based sandwich ELISAs. , 1998, Methods in molecular biology.

[56]  M. Goldberg,et al.  Methods for measurement of antibody/antigen affinity based on ELISA and RIA. , 1993, Current opinion in immunology.