Energy harvesting of nanofluid-conveying axially moving cylindrical composite nanoshells of integrated CNT and piezoelectric layers with magnetorheological elastomer core under external fluid vortex-induced vibration

[1]  S. A. Eftekhari,et al.  Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories , 2022, Chinese Physics B.

[2]  M. Shamonin,et al.  Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform , 2022, Sensors.

[3]  S. A. Eftekhari,et al.  Hydro–Hygro–Thermo–Magneto–Electro​ elastic wave propagation of axially moving nano-cylindrical shells conveying various magnetic-nano-fluids resting on the electromagnetic-visco-Pasternak medium , 2022, Thin-Walled Structures.

[4]  Mikhail Shamonin,et al.  Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields , 2021, Sensors.

[5]  P. Christensen,et al.  Risk management over the life cycle of lithium-ion batteries in electric vehicles , 2021 .

[6]  T. Ilina,et al.  Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites , 2021, Nanomaterials.

[7]  Md. Nazibul Hasan,et al.  Energy Harvesters for Wearable Electronics and Biomedical Devices , 2021, Advanced Materials Technologies.

[8]  Tarachand Amgoth,et al.  Renewable energy harvesting schemes in wireless sensor networks: A Survey , 2020, Inf. Fusion.

[9]  Hassan Elahi,et al.  Energy Harvesting towards Self-Powered IoT Devices , 2020, Energies.

[10]  N. Perov,et al.  Tunable layered composites based on magnetoactive elastomers and piezopolymer for sensors and energy harvesting devices , 2020, Journal of Physics D: Applied Physics.

[11]  Kun Wang,et al.  Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode , 2020 .

[12]  Pg Emeroylariffion Abas,et al.  Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review , 2020, International Journal of Energy Research.

[13]  Chunkai Qiu,et al.  Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications , 2020, Nano Energy.

[14]  M. M. Bhatti,et al.  Numerical Investigation on the Swimming of Gyrotactic Microorganisms in Nanofluids through Porous Medium over a Stretched Surface , 2020, Mathematics.

[15]  M. Hajj,et al.  Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure , 2020 .

[16]  C. Bowen,et al.  Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials , 2020, Joule.

[17]  Hamzeh Bardaweel,et al.  High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations , 2019, Applied Energy.

[18]  Lei Pan,et al.  Vibration energy harvesting of multifunctional carbon fibre composite laminate structures , 2019, Composites Science and Technology.

[19]  Xiaobiao Shan,et al.  Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration , 2019, Energy.

[20]  Ali J. Chamkha,et al.  Instabilities of SWCNT conveying laminar, incompressible and viscous fluid flow , 2019, International Journal of Numerical Methods for Heat & Fluid Flow.

[21]  Zhengbao Yang,et al.  Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration , 2019, Energy Conversion and Management.

[22]  Rahmat Ellahi,et al.  Structural impact of kerosene-Al2O3 nanoliquid on MHD Poiseuille flow with variable thermal conductivity: Application of cooling process , 2018 .

[23]  A. Ghassemi,et al.  Longitudinal and transverse wave propagation analysis of stationary and axially moving carbon nanotubes conveying nano-fluid , 2018, Applied Mathematical Modelling.

[24]  Håkan Olin,et al.  Human body constituted triboelectric nanogenerators as energy harvesters, code transmitters and motion sensors , 2018 .

[25]  S. Ziaei-Rad,et al.  Energy harvesting from vibration of Timoshenko nanobeam under base excitation considering flexoelectric and elastic strain gradient effects , 2018 .

[26]  Fumio Narita,et al.  Magnetostrictive clad steel plates for high-performance vibration energy harvesting , 2018 .

[27]  Rahmat Ellahi,et al.  Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field , 2017 .

[28]  Mostafa livani,et al.  Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer , 2017 .

[29]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[30]  Gursel Alici,et al.  A review on performance enhancement techniques for ambient vibration energy harvesters , 2017 .

[31]  Wen-Jong Wu,et al.  Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting , 2016 .

[32]  S. A. Eftekhari,et al.  Longitudinal vibration and instabilities of carbon nanotubes conveying fluid considering size effects of nanoflow and nanostructure , 2016 .

[33]  Abdelkader Nour,et al.  Numerical simulation of the nonlinear static behavior of composite sandwich beams with a magnetorheological elastomer core , 2016 .

[34]  Rahmat Ellahi,et al.  Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffery fluid in a rectangular duct , 2015 .

[35]  S. Kitipornchai,et al.  The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells , 2014 .

[36]  H. Altenbach,et al.  On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer , 2014 .

[37]  Keivan Kiani,et al.  Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes , 2013 .

[38]  Jia-Yi Yeh,et al.  Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment , 2013 .

[39]  R. Ellahi The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions , 2013 .

[40]  H. R. Mirdamadi,et al.  Effects of nonlocal elasticity and Knudsen number on fluid-structure interaction in carbon nanotube conveying fluid , 2012 .

[41]  Minbaek Lee,et al.  Flexible Nanocomposite Generator Made of BaTiO3 Nanoparticles and Graphitic Carbons , 2012, Advanced materials.

[42]  D. J. Inman,et al.  Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  Chen Xu,et al.  Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy , 2011, Advanced materials.

[44]  Zhong-Lin Wang Towards Self‐Powered Nanosystems: From Nanogenerators to Nanopiezotronics , 2008 .

[45]  Kamaldev Raghavan,et al.  VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow , 2008 .

[46]  J. N. Reddy,et al.  Nonlocal continuum theories of beams for the analysis of carbon nanotubes , 2008 .

[47]  Jia-Yi Yeh Vibration control of a sandwich annular plate with an electrorheological fluid core layer , 2007 .

[48]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[49]  E. de Langre,et al.  Coupling of Structure and Wake Oscillators in Vortex-Induced Vibrations , 2004 .

[50]  Charles H. K. Williamson,et al.  Vortex-induced vibration of a cylinder with two degrees of freedom , 2003 .

[51]  James L. Kolar Alternative energy technologies , 2000 .

[52]  Søren Nielsen,et al.  Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations , 1999 .

[53]  R. Skop,et al.  A new twist on an old model for vortex-excited vibrations , 1997 .

[54]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[55]  B. R. Noack,et al.  On cell formation in vortex streets , 1991, Journal of Fluid Mechanics.

[56]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .

[57]  Ehab Mahmoud Mohamed,et al.  A Trust-Based Energy-Efficient and Reliable Communication Scheme (Trust-Based ERCS) for Remote Patient Monitoring in Wireless Body Area Networks , 2020, IEEE Access.

[58]  Sudhansu Kumar Mishra,et al.  Energy harvesting via human body activities , 2020 .

[59]  Fei Wang,et al.  A comprehensive study of non-linear air damping and “pull-in” effects on the electrostatic energy harvesters , 2020 .

[60]  S. A. Eftekhari,et al.  INVESTIGATION ON THE EFFECT OF AXIALLY MOVING CARBON NANOTUBE, NANOFLOW, AND KNUDSEN NUMBER ON THE VIBRATIONAL BEHAVIOR OF THE SYSTEM , 2018 .

[61]  Xudong Wang,et al.  Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale , 2012 .

[62]  John Sheridan,et al.  Wake states and response branches of forced and freely oscillating cylinders , 2002 .

[63]  I. G. Currie,et al.  Lift-Oscillator Model of Vortex-Induced Vibration , 1970 .