The IBaCoP Planning System: Instance-Based Configured Portfolios

Sequential planning portfolios are very powerful in exploiting the complementary strength of different automated planners. The main challenge of a portfolio planner is to define which base planners to run, to assign the running time for each planner and to decide in what order they should be carried out to optimize a planning metric. Portfolio configurations are usually derived empirically from training benchmarks and remain fixed for an evaluation phase. In this work, we create a per-instance configurable portfolio, which is able to adapt itself to every planning task. The proposed system pre-selects a group of candidate planners using a Pareto-dominance filtering approach and then it decides which planners to include and the time assigned according to predictive models. These models estimate whether a base planner will be able to solve the given problem and, if so, how long it will take. We define different portfolio strategies to combine the knowledge generated by the models. The experimental evaluation shows that the resulting portfolios provide an improvement when compared with non-informed strategies. One of the proposed portfolios was the winner of the Sequential Satisficing Track of the International Planning Competition held in 2014.

[1]  Martin Müller,et al.  Arvand : the Art of Random Walks , 2011 .

[2]  S. Edelkamp,et al.  Engineering Benchmarks for Planning: the Domains Used in the Deterministic Part of IPC-4 , 2006, J. Artif. Intell. Res..

[3]  Blai Bonet,et al.  A Robust and Fast Action Selection Mechanism for Planning , 1997, AAAI/IAAI.

[4]  Maurizio Gabbrielli,et al.  Portfolio approaches for constraint optimization problems , 2015, Annals of Mathematics and Artificial Intelligence.

[5]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[6]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[7]  Marie desJardins,et al.  What Makes Planners Predictable? , 2008, ICAPS.

[8]  Marius Thomas Lindauer,et al.  From Sequential Algorithm Selection to Parallel Portfolio Selection , 2015, LION.

[9]  Sergio Jiménez Celorrio,et al.  The deterministic part of the seventh International Planning Competition , 2015, Artif. Intell..

[10]  Carmel Domshlak,et al.  Red-black planning: A new systematic approach to partial delete relaxation , 2015, Artif. Intell..

[11]  Malte Helmert,et al.  A Planning Heuristic Based on Causal Graph Analysis , 2004, ICAPS.

[12]  Jörg Hoffmann Analyzing Search Topology Without Running Any Search: On the Connection Between Causal Graphs and h+ , 2011, J. Artif. Intell. Res..

[13]  Kevin Leyton-Brown,et al.  Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors , 2012, SAT.

[14]  Jörg Hoffmann,et al.  The Metric-FF Planning System: Translating ''Ignoring Delete Lists'' to Numeric State Variables , 2003, J. Artif. Intell. Res..

[15]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[16]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[17]  Mauro Vallati,et al.  A Guide to Portfolio-Based Planning , 2012, MIWAI.

[18]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[19]  Blai Bonet,et al.  Planning as Heuristic Search: New Results , 1999, ECP.

[20]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[21]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[22]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[23]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.

[24]  Daniel Borrajo,et al.  Automatic construction of optimal static sequential portfolios for AI planning and beyond , 2015, Artif. Intell..

[25]  M. O'Mahony Sensory Evaluation of Food: Statistical Methods and Procedures , 1986 .

[26]  Yuri Malitsky,et al.  Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.

[27]  V. Vidal YAHSP 2 : Keep It Simple , Stupid , 2011 .

[28]  Robert C. Holte,et al.  Adding Local Exploration to Greedy Best-First Search in Satisficing Planning , 2014, AAAI.

[29]  Bernhard Nebel,et al.  On the Compilability and Expressive Power of Propositional Planning Formalisms , 2000, J. Artif. Intell. Res..

[30]  Y. Censor Pareto optimality in multiobjective problems , 1977 .

[31]  Norbert Jankowski,et al.  Feature selection with decision tree criterion , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[32]  Josef Kittler,et al.  Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings , 2000 .

[33]  Hector Geffner,et al.  Searching for Plans with Carefully Designed Probes , 2011, ICAPS.

[34]  Hans-Paul Schwefel,et al.  Advances in Computational Intelligence: Theory and Practice , 2002 .

[35]  Ron Kohavi,et al.  The Power of Decision Tables , 1995, ECML.

[36]  M. Helmert,et al.  FD-Autotune: Domain-Specific Configuration using Fast Downward , 2011 .

[37]  Jendrik Seipp,et al.  Automatic Configuration of Sequential Planning Portfolios , 2015, AAAI.

[38]  Ivan Serina,et al.  An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events , 2011, J. Artif. Intell. Res..

[39]  Marius Thomas Lindauer,et al.  aspeed: ASP-based Solver Scheduling , 2012, ICLP.

[40]  Fernando Fernández,et al.  Learning Predictive Models to Configure Planning Portfolios , 2013 .

[41]  Malte Helmert,et al.  Concise finite-domain representations for PDDL planning tasks , 2009, Artif. Intell..

[42]  Hector Geffner,et al.  Unifying the Causal Graph and Additive Heuristics , 2008, ICAPS.

[43]  Jendrik Seipp,et al.  Learning Portfolios of Automatically Tuned Planners , 2012, ICAPS.

[44]  Malte Helmert,et al.  Landmarks Revisited , 2008, AAAI.

[45]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[46]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[47]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[48]  Adele E. Howe,et al.  Learning from planner performance , 2009, Artif. Intell..

[49]  Alfonso Gerevini,et al.  Planning through Automatic Portfolio Configuration: The PbP Approach , 2014, J. Artif. Intell. Res..

[50]  Carmel Domshlak,et al.  Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? , 2009, ICAPS.

[51]  Kevin Leyton-Brown,et al.  Improved Features for Runtime Prediction of Domain-Independent Planners , 2014, ICAPS.

[52]  Lukás Chrpa,et al.  Portfolio-based planning: State of the art, common practice and open challenges , 2015, AI Commun..

[53]  Isabel Cenamor,et al.  Mining IPC-2011 Results , 2011 .

[54]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[55]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[56]  Marius Thomas Lindauer,et al.  AutoFolio: An Automatically Configured Algorithm Selector , 2015, J. Artif. Intell. Res..

[57]  Maurizio Gabbrielli,et al.  SUNNY: a Lazy Portfolio Approach for Constraint Solving , 2014, Theory Pract. Log. Program..

[58]  Malte Helmert,et al.  Lama 2008 and 2011 , 2011 .

[59]  Juan José Rodríguez Diez,et al.  Rotation Forest: A New Classifier Ensemble Method , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  Alfonso Gerevini,et al.  An Automatically Configurable Portfolio-based Planner with Macro-actions: PbP , 2009, ICAPS.

[61]  Alan Olsen Randward and Lamar : Randomizing the FF Heuristic , 2011 .

[62]  Kevin Leyton-Brown,et al.  Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..

[63]  R. Holte,et al.  Jasper : the Art of Exploration in Greedy Best First Search , 2014 .

[64]  Kevin Leyton-Brown,et al.  Algorithm Runtime Prediction: Methods and Evaluation (Extended Abstract) , 2015, IJCAI.

[65]  Ian Witten,et al.  Data Mining , 2000 .

[66]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[67]  Jörg Hoffmann,et al.  Fast Downward Stone Soup , 2011 .

[68]  Adele E. Howe,et al.  Exploiting Competitive Planner Performance , 1999, ECP.

[69]  Silvia Richter,et al.  The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks , 2010, J. Artif. Intell. Res..