Under Consideration for Publication in the Siam Journal of Applied Math the Transition to a Point Constraint in a Mixed Biharmonic Eigenvalue Problem

The mixed-order eigenvalue problem $-\delta \Delta^2 u + \Delta u + \lambda u = 0$ with $\delta>0$, modeling small amplitude vibrations of a thin plate, is analyzed in a bounded two-dimensional domain $\Omega$ that contains a single small hole of radius $\varepsilon$ centered at some $x_0\in \Omega$. Clamped conditions are imposed on the boundary of $\Omega$ and on the boundary of the small hole. In the limit $\varepsilon\to 0$, and for $\delta={\mathcal O}(1)$, the limiting problem for $u$ must satisfy the additional point constraint $u(x_0)=0$. To determine how the eigenvalues of the Laplacian in a domain with a small hole are perturbed by adding the small fourth-order term $-\delta \Delta^2 u$, together with an additional boundary condition on $\partial\Omega$ and on the hole boundary, the asymptotic behavior of the eigenvalues of the mixed-order eigenvalue problem are studied in the dual limit $\varepsilon\to 0$ and $\delta\to 0$. Leading-order behaviors of eigenvalues are determined for three ranges ...

[1]  Kyeong-Hoon Jeong,et al.  Free Vibration Analysis of Perforated Plates Using Equivalent Elastic Properties , 1998 .

[2]  S. Nazarov,et al.  Asymptotics of Eigenvalues of a Plate with Small Clamped Zone , 2001 .

[3]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[4]  Colin H. Hansen,et al.  CALCULATING RESONANCE FREQUENCIES OF PERFORATED PANELS , 1996 .

[5]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[6]  S. Ozawa,et al.  Singular variation of domains and eigenvalues of the Laplacian , 1981 .

[7]  Jeng-Tzong Chen,et al.  Free Vibration Analysis of a Circular Plate With Multiple Circular Holes by Using Indirect BIEM and Addition Theorem , 2011 .

[8]  James S. Harris,et al.  Tables of integrals , 1998 .

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  S. Mayboroda,et al.  Strong localization induced by one clamped point in thin plate vibrations. , 2009, Physical review letters.

[11]  Michael J. Ward,et al.  Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps , 2005, European Journal of Applied Mathematics.

[12]  Carlos J. S. Alves,et al.  The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates , 2009 .

[13]  R. Duffin,et al.  On the fundamental eigenfunctions of a clamped punctured disk , 1992 .

[14]  M. Flucher,et al.  Approximation of Dirichlet Eigenvalues on Domains with Small Holes , 1995 .

[15]  Michael J. Ward,et al.  Summing Logarithmic Expansions for Singularly Perturbed Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[16]  Thomas Ransford,et al.  Potential Theory in the Complex Plane: Bibliography , 1995 .

[17]  Alan E. Lindsay,et al.  Asymptotic Analysis of Localized Solutions to Some Linear and Nonlinear Biharmonic Eigenvalue Problems , 2011 .

[18]  A. Kalamkarov,et al.  Asymptotic analysis of perforated plates and membranes. Part 1: Static problems for small holes , 2012 .

[19]  Alan E. Lindsay,et al.  Asymptotics of some nonlinear eigenvalue problems modelling a MEMS Capacitor. Part II: multiple solutions and singular asymptotics , 2010, European Journal of Applied Mathematics.

[20]  P. Laurençot,et al.  A fourth‐order model for MEMS with clamped boundary conditions , 2013, 1304.2296.

[21]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[23]  L. Daudet,et al.  Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions , 2013, 1301.0908.