Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations

This paper introduces two stabilization schemes for the least squares commutator (LSC) preconditioner developed by Elman, Howle, Shadid, Shuttleworth, and Tuminaro [SIAM J. Sci. Comput., 27 (2006), pp. 1651-1668] for the incompressible Navier-Stokes equations. This preconditioning methodology is one of several choices that are effective for Navier-Stokes equations, and it has the advantage of being defined from strictly algebraic considerations. It has previously been limited in its applicability to div-stable discretizations of the Navier-Stokes equations. This paper shows how to extend the same methodology to stabilized low-order mixed finite element approximation methods.

[1]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[2]  R. Stenberg Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .

[3]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[4]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[5]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[6]  William Gropp,et al.  Domain Decomposition: Parallel Mul-tilevel Methods for Elliptic PDEs , 1996 .

[7]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[8]  David J. Silvester,et al.  ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .

[9]  DAVID KAY,et al.  A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..

[10]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[11]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[12]  R. Sani,et al.  Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .

[13]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[14]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[15]  David J. Silvester,et al.  Fourier Analysis of Stabilized Q1 -Q1 Mixed Finite Element Approximation , 2001, SIAM J. Numer. Anal..

[16]  G. Stoyan Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .

[17]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[18]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[19]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[20]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[21]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[22]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[23]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[24]  A. Wathen Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .

[25]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..