Least Squares Preconditioners for Stabilized Discretizations of the Navier-Stokes Equations
暂无分享,去创建一个
John N. Shadid | Howard C. Elman | Ray S. Tuminaro | Victoria E. Howle | David J. Silvester | R. Tuminaro | H. Elman | D. Silvester | J. Shadid | V. Howle
[1] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[2] R. Stenberg. Analysis of mixed finite elements methods for the Stokes problem: a unified approach , 1984 .
[3] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[4] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[5] R. A. Nicolaides,et al. STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .
[6] William Gropp,et al. Domain Decomposition: Parallel Mul-tilevel Methods for Elliptic PDEs , 1996 .
[7] J. Szmelter. Incompressible flow and the finite element method , 2001 .
[8] David J. Silvester,et al. ANALYSIS OF LOCALLY STABILIZED MIXED FINITE-ELEMENT METHODS FOR THE STOKES PROBLEM , 1992 .
[9] DAVID KAY,et al. A Posteriori Error Estimation for Stabilized Mixed Approximations of the Stokes Equations , 1999, SIAM J. Sci. Comput..
[10] Clark R. Dohrmann,et al. Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..
[11] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[12] R. Sani,et al. Incompressible Flow and the Finite Element Method, Volume 1, Advection-Diffusion and Isothermal Laminar Flow , 1998 .
[13] Andrew J. Wathen,et al. A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..
[14] Stefano Serra Capizzano,et al. On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..
[15] David J. Silvester,et al. Fourier Analysis of Stabilized Q1 -Q1 Mixed Finite Element Approximation , 2001, SIAM J. Numer. Anal..
[16] G. Stoyan. Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .
[17] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[18] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[19] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[20] S. Mittal,et al. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .
[21] H. Elman,et al. Efficient preconditioning of the linearized Navier-Stokes , 1999 .
[22] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .
[23] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[24] A. Wathen. Realistic Eigenvalue Bounds for the Galerkin Mass Matrix , 1987 .
[25] John N. Shadid,et al. Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..