Assembly, crystal structure, and luminescent properties of three-dimensional (10,3)-a netted rare earth coordination polymers

[1]  Hong‐Cai Zhou,et al.  Construction of robust open metal-organic frameworks with chiral channels and permanent porosity. , 2007, Inorganic chemistry.

[2]  Sifu Tang,et al.  Luminescent Lanthanide(III) Carboxylate−Phosphonates with Helical Tunnels , 2006 .

[3]  K. Fromm,et al.  Coordination polymer networks with O- and N-donors: What they are, why and how they are made , 2006 .

[4]  M. Shu,et al.  Reversible Anion Exchanges of Porous Metal−Organic Frameworks: Syntheses and Structures of Silver Complexes with Novel Rigid Tripodal Nitrogen Ligands , 2006 .

[5]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[6]  Weisheng Liu,et al.  Preparation, properties and structure of uncommon (10,3)-a netted rare earth complexes with an amide type tripodal ligand , 2005 .

[7]  M. Zaworotko,et al.  18-Fold Interpenetration and Concomitant Polymorphism in the 2:3 Co-Crystal of Trimesic Acid and 1,2-Bis(4-pyridyl)ethane† , 2005 .

[8]  M. Hardie,et al.  Disentangling disorder in the three-dimensional coordination network of {Ag3[tris(2-pyridylmethyl)cyclotriguaiacylene]2}(PF6)3 , 2005 .

[9]  L. Hou,et al.  Coordination polymers of copper(I) halides and neutral heterocyclic thiones with new coordination modes. , 2005, Inorganic chemistry.

[10]  M. Eddaoudi,et al.  Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal-organic framework. , 2005, Chemical communications.

[11]  Shui-Tong Lee,et al.  A High Tg Carbazole-Based Hole-Transporting Material for Organic Light-Emitting Devices , 2005 .

[12]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[13]  Wenhao Zhang,et al.  Construction of polymeric and oligomeric lanthanide(III) thiolates from preformed complexes [(TMS)2N]3Ln(mu-Cl)Li(THF)3 (Ln = Pr, Nd, Sm; (TMS)2N = Bis(trimethylsilyl)amide). , 2005, Journal of the American Chemical Society.

[14]  Y. Tang,et al.  Synthesis, characterization and luminescence properties of the rare earth complexes with 2,3-bist[(2 '-benzylaminoformyl)phenoxyllmethyl}quinoxaline , 2004 .

[15]  E. Cussen,et al.  Permanent microporosity and enantioselective sorption in a chiral open framework. , 2004, Journal of the American Chemical Society.

[16]  R. Poteau,et al.  Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. , 2004, Dalton transactions.

[17]  Weisheng Liu,et al.  Controlled Assembly of Dinuclear Metallorings into 1D Coordination Polymer and Mixed-metal Rare Earth Complexes with Red-to-Green Luminescence Properties , 2004 .

[18]  Krister Larsson,et al.  What kinds of three-dimensional nets are possible with tris-chelated metal complexes as building blocks? , 2004, Dalton transactions.

[19]  M. Tan,et al.  Helical ternary complexes of alkaline earth picrates with open-chain crown ether , 2003 .

[20]  Weisheng Liu,et al.  Novel three-dimensional network generated from the reaction of Eu(NO3)3 with an amide type tripodal ligand , 2002 .

[21]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[22]  C. Orvig,et al.  Homotrinuclear lanthanide(III) arrays: assembly of and conversion from mononuclear and dinuclear units. , 2000, Inorganic chemistry.

[23]  P. A. Jackson,et al.  A Robust (10,3)-a Network Containing Chiral Micropores in the AgI Coordination Polymer of a Bridging Ligand that Provides Three Bidentate Metal-Binding Sites. , 1998, Angewandte Chemie.

[24]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[25]  Veli-Matti Mukkala,et al.  Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield , 1997 .

[26]  Massimo Guardigli,et al.  Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .

[27]  M. Albin,et al.  Laser spectroscopic and x-ray structural investigation of europium(III)-oxydiacetate complexes in solution and in the solid state , 1985 .

[28]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .

[29]  G. Choppin,et al.  Environmental Effects on f–f Transitions. II. “Hypersensitivity” in Some Complexes of Trivalent Neodymium , 1968 .

[30]  W. Dawson,et al.  Internal‐Energy‐Transfer Efficiencies in Eu3+ and Tb3+ Chelates Using Excitation to Selected Ion Levels , 1966 .

[31]  N. F. Curtis,et al.  Some Nitrato-Amine Nickel(II) Compounds with Monodentate and Bidentate Nitrate Ions , 1965 .

[32]  C. Kepert,et al.  A porous chiral framework of coordinated 1,3,5-benzenetricarboxylate: quadruple interpenetration of the (10,3)-a network , 1998 .

[33]  Davide M. Proserpio,et al.  A three-dimensional ‘racemate’. Interpenetration of two enantiomeric networks of the SrSi2 topological type in the polymeric complex [Ag2(2,3-Me2pyz)3][SbF6]2(2,3-Me2pyz = 2,3-dimethylpyrazine) , 1996 .

[34]  C. Che,et al.  Cyclometallated platinum(II) complexes as luminescent switches for calf-thymus DNA , 1996 .

[35]  Brendan F. Abrahams,et al.  A wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed , 1996 .

[36]  A. K. Solanki,et al.  Indole 3-acetates and indole 3-butyrates of lanthanides , 1979 .

[37]  A. F. Wells Three-dimensional nets and polyhedra , 1977 .

[38]  S. P. Sinha Spectroscopic investigations of some neodymium complexes , 1966 .