Micro-scale fusion in dense relativistic nanowire array plasmas

[1]  X. Zhang,et al.  Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion. , 2017, Physical review letters.

[2]  J. Rocca,et al.  Nanoscale Ultradense Z-Pinch Formation from Laser-Irradiated Nanowire Arrays. , 2016, Physical review letters.

[3]  J. Krása,et al.  Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side , 2015 .

[4]  S. Ozaki,et al.  Direct heating of a laser-imploded core by ultraintense laser-driven ions. , 2015, Physical review letters.

[5]  D. A. Callahan,et al.  Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.

[6]  Yong Wang,et al.  Relativistic plasma nanophotonics for ultrahigh energy density physics , 2013, Nature Photonics.

[7]  Anatoly M. Maksimchuk,et al.  Energetic neutron beams generated from femtosecond laser plasma interactions , 2013 .

[8]  M. Donovan,et al.  Optimum laser intensity for the production of energetic deuterium ions from laser-cluster interaction , 2013, 1303.5814.

[9]  Andrea Favalli,et al.  Bright laser-driven neutron source based on the relativistic transparency of solids. , 2013, Physical review letters.

[10]  J. Frenje,et al.  Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions , 2011 .

[11]  P. Chang,et al.  Fusion yield enhancement in magnetized laser-driven implosions. , 2011, Physical review letters.

[12]  F. Goldin,et al.  Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination. , 2010, The Review of scientific instruments.

[13]  M. J. Edwards,et al.  Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies , 2009, Science.

[14]  John Banhart,et al.  Advances in neutron radiography and tomography , 2009 .

[15]  Alexander Pukhov,et al.  Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses , 2007 .

[16]  E. Prince,et al.  Neutron Scattering Instrumentation: A Tutorial Review , 2004 .

[17]  Dmitri I Svergun,et al.  Advances in structure analysis using small-angle scattering in solution. , 2002, Current opinion in structural biology.

[18]  S. Sebban,et al.  Deuterium-deuterium fusion dynamics in low-density molecular-cluster jets irradiated by intense ultrafast laser pulses. , 2002, Physical review letters.

[19]  Todd Ditmire,et al.  Detailed study of nuclear fusion from femtosecond laser-driven explosions of deuterium clusters , 2002 .

[20]  G. Hays,et al.  Nuclear fusion in gases of deuterium clusters heated with a femtosecond laser , 2000 .

[21]  A. Zhidkov,et al.  Effect of field ionization on interaction of an intense subpicosecond laser pulse with foils , 2000 .

[22]  T. E. Cowan,et al.  Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters , 1999, Nature.

[23]  J. Meyer-ter-Vehn,et al.  Neutron production by 200 mJ ultrashort laser pulses , 1998 .

[24]  T. C. Sangster,et al.  Hot electron production and heating by hot electrons in fast ignitor research , 1998 .

[25]  A. E. Dangor,et al.  Neutron production from picosecond laser irradiation of deuterated targets at intensities of , 1998 .

[26]  Alexander Pukhov,et al.  Laser Hole Boring into Overdense Plasma and Relativistic Electron Currents for Fast Ignition of ICF Targets , 1997 .

[27]  Todd Ditmire,et al.  High Intensity Laser Absorption by Gases of Atomic Clusters , 1997 .

[28]  T. Ditmire,et al.  High-energy ions produced in explosions of superheated atomic clusters , 1997, Nature.

[29]  Jorge J. Rocca,et al.  Dynamics of a capillary discharge x-ray laser , 1995, Optics & Photonics.

[30]  Keane,et al.  Diagnosis of pusher-fuel mix in indirectly driven Nova implosions. , 1994, Physical review letters.

[31]  S. Pearlstein EVALUATED NUCLEAR DATA FILES , 1975 .

[32]  W. B. Thompson Thermonuclear Reaction Rates , 1957 .