A study on the dependence between tracheid lengths and microfibril angle in resonant wood of spruce (Picea abies L.)

[1]  W. Moliński,et al.  Ultrastructure and ultrasound wave propagation velocity in spruce (Picea abies L.) resonance wood , 2010 .

[2]  L. Donaldson Microfibril Angle: Measurement, Variation and Relationships – A Review , 2008 .

[3]  René Steiger,et al.  Assessment of resonance wood quality by comparing its physical and histological properties , 2008, Wood Science and Technology.

[4]  R. E. Mark,et al.  VARIATION OF MICROFIBRIL ANGLE WITHIN INDIVIDUAL TRACHEIDS , 2007 .

[5]  P. Niemz,et al.  Untersuchungen zur Schallausbreitungsgeschwindigkeit für ausgewählte Holzarten Chiles , 2007, Holz als Roh- und Werkstoff.

[6]  E. Fabisiak Zmiennosc podstawowych elementow anatomicznych i gestosci drewna wybranych gatunkow drzew , 2005 .

[7]  Ryogo Nakada,et al.  Cell wall structure and wood properties determined by acoustics—a selective review , 2003, Holz als Roh- und Werkstoff.

[8]  Junji Sugiyama,et al.  The importance of seasonal differences in the cellulose microfibril angle in softwoods in determining acoustic properties , 2002 .

[9]  P. A. Watson,et al.  An improved fibril angle measurement method for wood fibres , 2001, Wood Science and Technology.

[10]  P. Dutilleul,et al.  Intra-ring and inter-ring variations of tracheid length in fast-grown versus slow-grown Norway spruces (Picea abies) , 1998 .

[11]  E. T. Choong,et al.  Variation In Cell Dimensions and Fibril Angle For Two Fertilized Even-Aged Loblolly Pine Plantations , 1996 .

[12]  M. Norimoto,et al.  On physical criteria for the selection of wood for soundboards of musical instruments , 1984 .