Application of scanning thermal microscopy for thermal conductivity measurements on meso-porous silicon thin films

A scanning thermal microscope (SThM) in the dc regime was used to study the thermal conductivity of homogeneous in-depth meso-porous silicon in the form of thin films on a monocrystalline silicon substrate. Measurements for different film porosities (30–80%) and thicknesses (100 nm–8 µm) were performed in order to estimate the influence of both layer porosity and thickness on the thermal conductivity values of porous silicon (PS). An analytical model predicting the SThM measurement in the case of ultra-thin monolayered samples was used to calibrate the technique, to analyse experimental data and to determine the thermal conductivity of meso-porous layers. Effective thermal conductivity of meso-PS films was found to decrease when the porosity increases. The effective thermal conductivities measured for thick porous layers (several µm) are in good accordance with those measured by micro-Raman-spectroscopy on bulk meso-PS samples. For submicrometric thicknesses (<1 µm), the effective thermal conductivity of layers decreases significantly with decreasing layer thickness due to the increased sensitivity of measurements to the thermal resistance of the film/substrate interface. An intrinsic thermal conductivity of PS was calculated independently of the film thickness and the values of interfacial thermal resistances were thus estimated. From the apparatus point of view, the results obtained show that the depth being sensed is of the order of a few micrometres for insulating materials and depends on the thermal conductivity of the films.

[1]  Y. Scudeller,et al.  Thermal conductivity of ZrO2 thin films , 2000 .

[2]  Seungmin Lee,et al.  Interface thermal conductance and the thermal conductivity of multilayer thin films , 2000 .

[3]  Vladimir Lysenko,et al.  Thermal isolation in microsystems with porous silicon , 2002 .

[4]  Ettore Massera,et al.  Investigation of thermal transport in n-type porous silicon by photo-acoustic technique , 2003 .

[5]  Bernard Champagnon,et al.  Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering , 1999 .

[6]  I. Ferguson,et al.  HIGH SPATIAL RESOLUTION THERMAL CONDUCTIVITY OF LATERAL EPITAXIAL OVERGROWN GAN/SAPPHIRE (0001) USING A SCANNING THERMAL MICROSCOPE , 1999 .

[7]  H. Pollock,et al.  Micro-thermal analysis: techniques and applications , 2001 .

[8]  Stefan Schulz,et al.  Thermal conductivity of ultra low- k dielectrics , 2003 .

[9]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[10]  Jean-Luc Battaglia,et al.  CuO thin films thermal conductivity and interfacial thermal resistance estimation , 2006 .

[11]  S. D. Collins,et al.  Porous silicon formation mechanisms , 1992 .

[12]  H. Thurman Henderson,et al.  Structural design and characteristics of a thermally isolated, sensitivity-enhanced, bulk-micromachined, silicon flow sensor , 1996 .

[13]  G. Tallarida,et al.  Thermal conductivity of SiO2 films by scanning thermal microscopy , 1999 .

[14]  Kuei-Hsien Chen,et al.  Traveling wave method for measurement of thermal conductivity of thin films , 1997 .

[15]  Spécialité Biochimie L'INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON , 2006 .

[16]  Photo-acoustic characterization of porous silicon samples , 1999 .

[17]  Bincheng Li,et al.  Complete thermal characterization of film-on-substrate system by modulated thermoreflectance microscopy and multiparameter fitting , 1999 .

[18]  A. Majumdar SCANNING THERMAL MICROSCOPY , 1999, Annual Review of Materials Science.

[19]  Michael Reichling,et al.  Thermal conductivity of thin metallic films measured by photothermal profile analysis , 1997 .

[20]  M. Asheghi,et al.  Thermal conduction in doped single-crystal silicon films , 2002 .

[21]  M. Raynaud,et al.  Modelling for the thermal characterization of solid materials by dc scanning thermal microscopy , 2007 .

[22]  L. Boarino,et al.  Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method , 1997 .

[23]  Erwin R. Meinders Measurement of the thermal conductivity of thin layers using a scanning thermal microscope , 2001 .

[24]  Q. Shen,et al.  Dependence of thermal conductivity of porous silicon on porosity characterized by photoacoustic technique , 2003 .

[25]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[26]  Vladimir V. Tsukruk,et al.  PROBING SURFACE MICROTHERMAL PROPERTIES BY SCANNING THERMAL MICROSCOPY , 1999 .

[27]  John C. Lambropoulos,et al.  Thermal conductivity of dielectric thin films , 1989 .

[28]  G. Di Francia,et al.  Evaluation of the thermal conductivity of porous silicon layers by an optical pump-probe method , 2001 .

[29]  Jean-Christophe Batsale,et al.  Thermal parameters identification of micrometric layers of microelectronic devices by thermoreflectance microscopy , 2004, Microelectron. J..

[30]  L. Balk,et al.  Quantitative thermal conductivity measurements with nanometre resolution , 1999 .

[31]  Jochen Fricke,et al.  Temperature-dependent thermal conductivity of porous silicon , 1997 .

[32]  N. Trannoy,et al.  DC thermal microscopy: study of the thermal exchange between a probe and a sample , 1999 .

[33]  N. Trannoy,et al.  Thermal conductivity calibration for hot wire based dc scanning thermal microscopy , 2003 .

[34]  Fred H. Pollak,et al.  Determination of the thermal conductivity of diamond-like nanocomposite films using a scanning thermal microscope , 1998 .

[35]  Bernard Champagnon,et al.  Technology and micro-Raman characterization of thick meso-porous silicon layers for thermal effect microsystems , 2000 .

[36]  M. Jaouen,et al.  Thermal Conductivity Measurements of Thin Amorphous Silicon Films by Scanning Thermal Microscopy , 2002 .

[37]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .