Enhanced functions of osteoblasts on nanometer diameter carbon fibers.

The present in vitro study investigated select functions (specifically, proliferation, synthesis of intracellular proteins, alkaline phosphatase activity, and deposition of calcium-containing mineral) of osteoblasts (the bone-forming cells) cultured on carbon fibers with nanometer dimensions. Carbon fiber compacts were synthesized to possess either nanophase (i.e., dimensions 100 nm or less) or conventional (i.e., dimensions larger than 100 nm) fiber diameters. Osteoblast proliferation increased with decreasing carbon fiber diameters after 3 and 7 days of culture. Moreover, compared to larger-diameter carbon fibers, osteoblasts synthesized more alkaline phosphatase and deposited more extracellular calcium on nanometer-diameter carbon fibers after 7, 14, and 21 days of culture. The results of the present study provided the first evidence of enhanced long-term (in the order of days to weeks) functions of osteoblasts cultured on nanometer-diameter carbon fibers; in this manner, carbon nanofibers clearly represent a unique and promising class of orthopedic/dental implant formulations with improved osseointegrative properties.

[1]  T. Webster,et al.  Enhanced functions of osteoblasts on nanophase ceramics. , 2000, Biomaterials.

[2]  O. H. Lowry,et al.  The quantitative histochemistry of brain. II. Enzyme measurements. , 1954, The Journal of biological chemistry.

[3]  Y. Fung,et al.  Bone and Cartilage , 1993 .

[4]  C. Chu,et al.  Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion. , 1997, Journal of biomedical materials research.

[5]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[6]  J. B. Brunski,et al.  36. Influence of Biomechanical Factors at the Bone-Biomaterial Interface , 1991 .

[7]  D. Williams,et al.  Carbon fiber-reinforced carbon as a potential implant material. , 1978, Journal of biomedical materials research.

[8]  Andrew A. Marino,et al.  Repair of fascial defects in dogs using carbon fibers. , 1998, The Journal of surgical research.

[9]  A. Haubold,et al.  Carbon In Prosthetic Devices , 1976 .

[10]  T. Webster,et al.  Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. , 2001, Tissue engineering.

[11]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[12]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[13]  P. Strzelczyk,et al.  Carbon fiber scaffolds in the surgical treatment of cartilage lesions. , 1999, Annals of transplantation.

[14]  D. Rosenbaum,et al.  Tenodesis Versus Carbon Fiber Repair of Ankle Ligaments: A Clinical Comparison , 1996, Clinical orthopaedics and related research.

[15]  S. Ayad The extracellular matrix factsbook , 1998 .

[16]  H. Yasuda,et al.  Improvement of fatigue properties of poly(methyl methacrylate) bone cement by means of plasma surface treatment of fillers. , 1999, Journal of biomedical materials research.

[17]  M. Dresselhaus Carbon nanotubes , 1995 .

[18]  G. B. Pelleu,et al.  The tensile strength of a composite resin reinforced with carbon fibers. , 1983, The Journal of prosthetic dentistry.

[19]  M. Engelhardt,et al.  Fremdkörperreaktion bei Karbonfaserstiftimplantation im Kniegelenk - Kasuistik und Literaturübersicht , 2000 .

[20]  J. Newman,et al.  Petroleum-derived carbons , 1986 .

[21]  R. Gill Carbon fibres in composite materials , 1972 .

[22]  T. Webster,et al.  Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. , 2000, Journal of biomedical materials research.