The influence of environment and origin on brain resident macrophages and implications for therapy

[1]  L. Clarke Mucopolysaccharidosis Type I , 2016, Definitions.

[2]  F. Ginhoux,et al.  Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells , 2019, Cell.

[3]  Brian J Cummings,et al.  Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo , 2019, Neuron.

[4]  I. Amit,et al.  Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations , 2019, Nature Communications.

[5]  F. Ginhoux,et al.  Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells , 2019, Cell.

[6]  I. Weissman,et al.  Anti-human CD117 antibody-mediated bone marrow niche clearance in nonhuman primates and humanized NSG mice. , 2019, Blood.

[7]  Yvan Saeys,et al.  A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment , 2019, Nature Neuroscience.

[8]  G. Feng,et al.  Tmem119-EGFP and Tmem119-CreERT2 Transgenic Mice for Labeling and Manipulating Microglia , 2019, eNeuro.

[9]  A. Singleton,et al.  Bi-allelic CSF1R Mutations Cause Skeletal Dysplasia of Dysosteosclerosis-Pyle Disease Spectrum and Degenerative Encephalopathy with Brain Malformation. , 2019, American journal of human genetics.

[10]  Jeroen A. A. Demmers,et al.  Homozygous Mutations in CSF1R Cause a Pediatric-Onset Leukoencephalopathy and Can Result in Congenital Absence of Microglia. , 2019, American journal of human genetics.

[11]  E. Huang,et al.  Impaired αVβ8 and TGFβ signaling lead to microglial dysmaturation and neuromotor dysfunction , 2019, The Journal of experimental medicine.

[12]  J. N. Kay,et al.  Microglial Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and Degeneration , 2019, Immunity.

[13]  R. Perlis,et al.  Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning , 2019, Nature Neuroscience.

[14]  Tuan Leng Tay,et al.  Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation , 2019, Science.

[15]  M. Monje,et al.  Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment , 2019, Cell.

[16]  Evan Z. Macosko,et al.  Single‐Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell‐State Changes , 2019, Immunity.

[17]  N. Neff,et al.  Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing , 2018, Neuron.

[18]  Tuan Leng Tay,et al.  Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge , 2018, Nature Communications.

[19]  J. Troy,et al.  Long-Term Functional Outcomes after Hematopoietic Stem Cell Transplant for Early Infantile Krabbe Disease. , 2018, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[20]  M. Jagodic,et al.  Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells , 2018, Nature Communications.

[21]  R. Kahn,et al.  Microglia innately develop within cerebral organoids , 2018, Nature Communications.

[22]  B. Stevens,et al.  Microglia and the Brain: Complementary Partners in Development and Disease. , 2018, Annual review of cell and developmental biology.

[23]  J. Pollard,et al.  Erythro-myeloid progenitors contribute endothelial cells to blood vessels , 2018, Nature.

[24]  J. Pollard,et al.  Erythro-myeloid progenitors contribute endothelial cells to blood vessels , 2018, Nature.

[25]  S. Hickman,et al.  Microglia in neurodegeneration , 2018, Nature Neuroscience.

[26]  J. Pocock,et al.  Modelling microglial function with induced pluripotent stem cells: an update , 2018, Nature Reviews Neuroscience.

[27]  M. Hockin,et al.  Two distinct ontogenies confer heterogeneity to mouse brain microglia , 2018, Development.

[28]  D. Traver,et al.  Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. , 2018, Cell reports.

[29]  Joseph R. Scarpa,et al.  Epigenetic regulation of brain region-specific microglia clearance activity , 2018, Nature Neuroscience.

[30]  Christopher C. Overall,et al.  Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia , 2018, The Journal of experimental medicine.

[31]  E. Marcello,et al.  Sex-Specific Features of Microglia from Adult Mice , 2018, Cell reports.

[32]  F. C. Bennett,et al.  A Combination of Ontogeny and CNS Environment Establishes Microglial Identity , 2018, Neuron.

[33]  A. Bigas,et al.  Blood Development: Hematopoietic Stem Cell Dependence and Independence. , 2018, Cell stem cell.

[34]  Z. Mari,et al.  Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease , 2018, Nature Medicine.

[35]  M. Jagodic,et al.  Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF-β signaling , 2018, Nature Immunology.

[36]  Eyal David,et al.  Re-evaluating Microglia Expression Profiles Using RiboTag and Cell Isolation Strategies , 2018, Nature Immunology.

[37]  Tuan Leng Tay,et al.  Histone Deacetylases 1 and 2 Regulate Microglia Function during Development, Homeostasis, and Neurodegeneration in a Context‐Dependent Manner , 2018, Immunity.

[38]  W. Wong,et al.  Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation , 2018, Science Advances.

[39]  Bo Peng,et al.  Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion , 2018, Nature Neuroscience.

[40]  E. Giorgetti,et al.  Brain region-specific enhancement of remyelination and prevention of demyelination by the CSF1R kinase inhibitor BLZ945 , 2018, Acta neuropathologica communications.

[41]  Melanie A. Huntley,et al.  Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models. , 2018, Cell reports.

[42]  Z. Wszolek,et al.  Diagnostic criteria for adult‐onset leukoencephalopathy with axonal spheroids and pigmented glia due to CSF1R mutation , 2018, European journal of neurology.

[43]  B. Barres,et al.  Microglia and macrophages in brain homeostasis and disease , 2017, Nature Reviews Immunology.

[44]  F. Geissmann,et al.  Yolk sac macrophage progenitors traffic to the embryo during defined stages of development , 2018, Nature Communications.

[45]  A. Waisman,et al.  A novel microglial subset plays a key role in myelinogenesis in developing brain , 2017, The EMBO journal.

[46]  M. Rosenblum,et al.  A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease , 2017, Nature.

[47]  R. Feil,et al.  Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging , 2017, Nature Neuroscience.

[48]  Jeff E. Mold,et al.  The Lifespan and Turnover of Microglia in the Human Brain , 2017, Cell reports.

[49]  Zheng-Xiong Xi,et al.  Local Cues Establish and Maintain Region-Specific Phenotypes of Basal Ganglia Microglia , 2017, Neuron.

[50]  F. Ginhoux,et al.  Induced‐Pluripotent‐Stem‐Cell‐Derived Primitive Macrophages Provide a Platform for Modeling Tissue‐Resident Macrophage Differentiation and Function , 2017, Immunity.

[51]  Baptiste N. Jaeger,et al.  An environment-dependent transcriptional network specifies human microglia identity , 2017, Science.

[52]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[53]  A. Andrews,et al.  Antibody blockade of CLEC12A delays EAE onset and attenuates disease severity by impairing myeloid cell CNS infiltration and restoring positive immunity , 2017, Scientific Reports.

[54]  F. C. Bennett,et al.  Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures , 2017, Neuron.

[55]  K. Scearce-Levie,et al.  Mice deficient in NRROS show abnormal microglial development and neurological disorders , 2017, Nature Immunology.

[56]  Michael D. Cahalan,et al.  iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases , 2017, Neuron.

[57]  Tuan Leng Tay,et al.  A new fate mapping system reveals context-dependent random or clonal expansion of microglia , 2017, Nature Neuroscience.

[58]  G. MacGregor,et al.  Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain , 2017, Journal of Neuroinflammation.

[59]  D. Maric,et al.  Differentiation of human and murine induced pluripotent stem cells to microglia-like cells , 2017, Nature Neuroscience.

[60]  W. Westbroek,et al.  The Complicated Relationship between Gaucher Disease and Parkinsonism: Insights from a Rare Disease , 2017, Neuron.

[61]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[62]  O. Garaschuk,et al.  Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain , 2017, Cell reports.

[63]  B. Becher,et al.  Sall1 is a transcriptional regulator defining microglia identity and function , 2016, Nature Immunology.

[64]  Christoph Bock,et al.  Specification of tissue-resident macrophages during organogenesis , 2016, Science.

[65]  Li-Huei Tsai,et al.  Efficient derivation of microglia-like cells from human pluripotent stem cells , 2016, Nature Medicine.

[66]  I. Amit,et al.  Microglia development follows a stepwise program to regulate brain homeostasis , 2016, Science.

[67]  Steffen Jung,et al.  Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression , 2016, eLife.

[68]  J. Eilers,et al.  Neurons exhibit Lyz2 promoter activity in vivo: Implications for using LysM‐Cre mice in myeloid cell research , 2016, European journal of immunology.

[69]  M. Wasserstein,et al.  Screening of Newborns for Disorders with High Benefit-Risk Ratios Should Be Mandatory , 2016, Journal of Law, Medicine & Ethics.

[70]  S. Linnarsson,et al.  Origin, fate and dynamics of macrophages at central nervous system interfaces , 2016, Nature Immunology.

[71]  Y. Saeys,et al.  Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. , 2016, Immunity.

[72]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[73]  E. Chang,et al.  Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse , 2016, Neuron.

[74]  H. Mefford,et al.  Arylsulfatase A Deficiency -- GeneReviews® , 2016 .

[75]  K. Stephens,et al.  Krabbe Disease -- GeneReviews(®) , 2016 .

[76]  H. Mefford,et al.  Mucopolysaccharidosis Type I -- GeneReviews(®) , 2016 .

[77]  H. Mefford,et al.  Gaucher Disease -- GeneReviews(®) , 2016 .

[78]  B. Becher,et al.  The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity. , 2015, Immunity.

[79]  Jianpeng Sheng,et al.  Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. , 2015, Immunity.

[80]  Frauke Zipp,et al.  Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. , 2015, Immunity.

[81]  F. Ginhoux,et al.  C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. , 2015, Immunity.

[82]  M. Scarpa Mucopolysaccharidosis Type II , 2015 .

[83]  T. Autti,et al.  Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL) , 2015 .

[84]  D. Holtzman,et al.  TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model , 2015, Cell.

[85]  J. Stender,et al.  Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities , 2015, Cell.

[86]  F. Geissmann,et al.  Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors , 2014, Nature.

[87]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[88]  J. Stender,et al.  Environment Drives Selection and Function of Enhancers Controlling Tissue-Specific Macrophage Identities , 2014, Cell.

[89]  F. Geissmann,et al.  Constant replenishment from circulating monocytes maintains the macrophage pool in adult intestine , 2014, Nature Immunology.

[90]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[91]  A. Fluharty Arylsulfatase A Deficiency , 2014 .

[92]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[93]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[94]  Toshiro K. Ohsumi,et al.  The Microglial Sensome Revealed by Direct RNA Sequencing , 2013, Nature Neuroscience.

[95]  T. Iwaki,et al.  A case of hereditary diffuse leukoencephalopathy with axonal spheroids caused by a de novo mutation in CSF1R masquerading as primary progressive multiple sclerosis , 2013, Multiple sclerosis.

[96]  A. Fischer,et al.  Outcomes of transplantation using various hematopoietic cell sources in children with Hurler syndrome after myeloablative conditioning. , 2013, Blood.

[97]  F. Ginhoux,et al.  Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. , 2013, Immunity.

[98]  A. Mildner,et al.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. , 2013, Immunity.

[99]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[100]  J. Relton,et al.  Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival , 2013, The Journal of experimental medicine.

[101]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[102]  A. Hofman,et al.  Variant of TREM2 associated with the risk of Alzheimer's disease. , 2013, The New England journal of medicine.

[103]  O. Garaschuk,et al.  Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells , 2012, Proceedings of the National Academy of Sciences.

[104]  C. Di Serio,et al.  Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation , 2012, Proceedings of the National Academy of Sciences.

[105]  F. Ginhoux,et al.  Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages , 2012, The Journal of experimental medicine.

[106]  J. Pollard,et al.  A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells , 2012, Science.

[107]  T. Martin,et al.  Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis , 2012, Nature Medicine.

[108]  James C. Cronk,et al.  Wild type microglia arrest pathology in a mouse model of Rett syndrome , 2012, Nature.

[109]  R. Ransohoff,et al.  The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood , 2012, The Journal of Immunology.

[110]  F. Rossi,et al.  Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool , 2011, Nature Neuroscience.

[111]  E. Forsberg,et al.  All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. , 2011, Cell stem cell.

[112]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[113]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[114]  R. Ransohoff,et al.  Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice , 2010, PloS one.

[115]  H. Zeilhofer,et al.  Hoxb8‐Cre mice: A tool for brain‐sparing conditional gene deletion , 2010, Genesis.

[116]  L. Liaw,et al.  The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells , 2010, Genesis.

[117]  Petr Tvrdik,et al.  Hematopoietic Origin of Pathological Grooming in Hoxb8 Mutant Mice , 2010, Cell.

[118]  M. Vanier Niemann-Pick disease type C , 2010, Orphanet journal of rare diseases.

[119]  Manfred Schmidt,et al.  Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy , 2009, Science.

[120]  A. Mildner,et al.  Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions , 2007, Nature Neuroscience.

[121]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[122]  H. Moser,et al.  Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: a comparison study , 2007, The Lancet Neurology.

[123]  S. Nishikawa,et al.  Cell tracing shows the contribution of the yolk sac to adult haematopoiesis , 2007, Nature.

[124]  W. Gan,et al.  The P2Y12 receptor regulates microglial activation by extracellular nucleotides , 2006, Nature Neuroscience.

[125]  L. Naldini,et al.  Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. , 2006, The Journal of clinical investigation.

[126]  Steffen Jung,et al.  Control of microglial neurotoxicity by the fractalkine receptor , 2006, Nature Neuroscience.

[127]  H. Moser,et al.  Cerebral X-linked adrenoleukodystrophy: the international hematopoietic cell transplantation experience from 1982 to 1999. , 2004, Blood.

[128]  Gang Tao,et al.  A Comparison Study , 2003 .

[129]  D. Charnock-Jones,et al.  vavCre Transgenic mice: A tool for mutagenesis in hematopoietic and endothelial lineages , 2002, Genesis.

[130]  R. Russell,et al.  Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. , 2002, Blood.

[131]  I. Jambaqué,et al.  Long-term effect of bone-marrow transplantation for childhood-onset cerebral X-linked adrenoleukodystrophy , 2000, The Lancet.

[132]  B. Pessac,et al.  Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. , 1999, Brain research. Developmental brain research.

[133]  J. Mandel,et al.  Adrénoleucodystrophie liée à l'X , 2007 .

[134]  V. Perry,et al.  Turnover of resident microglia in the normal adult mouse brain , 1992, Neuroscience.

[135]  K. Johnson An Update. , 1984, Journal of food protection.