Extreme-value copulas

Being the limits of copulas of componentwise maxima in independent random samples, extreme-value copulas can be considered to provide appropriate models for the dependence structure between rare events. Extreme-value copulas not only arise naturally in the domain of extreme-value theory, they can also be a convenient choice to model general positive dependence structures. The aim of this survey is to present the reader with the state-of-the-art in dependence modeling via extreme-value copulas. Both probabilistic and statistical issues are reviewed, in a nonparametric as well as a parametric context.

[1]  Arthur Charpentier,et al.  Tails of multivariate Archimedean copulas , 2009, J. Multivar. Anal..

[2]  Harry Joe,et al.  Bivariate Threshold Methods for Extremes , 1992 .

[3]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[4]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[5]  L. Haan,et al.  Extreme value theory , 2006 .

[6]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[7]  N. Balakrishnan,et al.  Continuous Bivariate Distributions , 2009 .

[8]  Janos Galambos,et al.  Order Statistics of Samples from Multivariate Distributions , 1975 .

[9]  Anthony C. Davison,et al.  A mixture model for multivariate extremes , 2007 .

[10]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[11]  A. Obretenov On the dependence function of Sibuya in multivariate extreme value theory , 1991 .

[12]  J. Hüsler Maxima of normal random vectors: between independence and complete dependence , 1989 .

[13]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[14]  Eric Gilleland,et al.  Software for the analysis of extreme events: The current state and future directions , 2005 .

[15]  Simon Guillotte,et al.  A bayesian estimator for the dependence function of a bivariate extreme‐value distribution , 2008 .

[16]  Haijun Li,et al.  Orthant tail dependence of multivariate extreme value distributions , 2009, J. Multivar. Anal..

[17]  A. Stephenson Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .

[18]  Jun Yan,et al.  Enjoy the Joy of Copulas : With a Package copula , 2007 .

[19]  Paul Deheuvels,et al.  On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .

[20]  E. Hashorva Extremes of asymptotically spherical and elliptical random vectors , 2005 .

[21]  Stephan Morgenthaler,et al.  Robust weighted likelihood estimators with an application to bivariate extreme value problems , 2002 .

[22]  Piotr Jaworski,et al.  Tail Behaviour of Copulas , 2010 .

[23]  H. Joe Multivariate extreme‐value distributions with applications to environmental data , 1994 .

[24]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[25]  S. Berman Convergence to bivariate limiting extreme value distributions , 1961 .

[26]  Jonathan A. Tawn,et al.  Inequalities for the Extremal Coefficients of Multivariate Extreme Value Distributions , 2002 .

[27]  Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2009 .

[28]  Jonathan A. Tawn,et al.  Statistics of Multivariate Extremes , 1990 .

[29]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[30]  J. D. T. Oliveira Statistical Decision for Bivariate Extremes , 1989 .

[31]  C. Sempi,et al.  Copula Theory: An Introduction , 2010 .

[32]  A. Ledford,et al.  Statistics for near independence in multivariate extreme values , 1996 .

[33]  Harry Joe,et al.  Families of min-stable multivariate exponential and multivariate extreme value distributions , 1990 .

[34]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[35]  L. Haan,et al.  Weighted approximations to tail copula processes with application to testing the extreme value condition , 2006, math/0611370.

[36]  J. Segers Non-Parametric Inference for Bivariate Extreme-Value Copulas , 2004 .

[37]  David Oakesamita K. Manatunga,et al.  Fisher information for a bivariate extreme value distribution , 1992 .

[38]  H. Drees,et al.  Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function , 1998 .

[39]  Probabilistic Aspects of Multivariate Extremes , 1984 .

[40]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[41]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[42]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[43]  Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions , 2001 .

[44]  H. Joe Multivariate extreme value distributions , 1997 .

[45]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[46]  J. Tawn,et al.  Effects of Mis-Specification in Bivariate Extreme Value Problems , 2001 .

[47]  H. Block Multivariate Exponential Distribution , 2006 .

[48]  Deyuan Li,et al.  Weighted Approximations of Tail Copula Processes with Application to Testing the Multivariate Extreme Value Condition , 2004 .

[49]  C. Klüppelberg,et al.  Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case , 2008 .

[50]  C. Stărică,et al.  Multivariate extremes for models with constant conditional correlations , 1999 .

[51]  M. Weibull,et al.  A Multivariate Distribution with Weibull Connections , 1989 .

[52]  Daoji Shi,et al.  Fisher information for a multivariate extreme value distribution , 1995 .

[53]  C. Klüppelberg,et al.  Estimating the tail dependence function of an elliptical distribution , 2007 .

[54]  Kilani Ghoudi,et al.  Extreme behaviour for bivariate elliptical distributions , 2005 .

[55]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[56]  J. Segers,et al.  A Method of Moments Estimator of Tail Dependence , 2007, 0710.2039.

[57]  P. Hougaard A class of multivanate failure time distributions , 1986 .

[58]  Anne-Laure Fougères,et al.  Estimation of a Bivariate Extreme Value Distribution , 2000 .

[59]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[60]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[61]  Martin Crowder,et al.  Continuous Bivariate Distributions, Emphasizing Applications , 1993 .

[62]  Christian Genest,et al.  On the Ghoudi, Khoudraji, and Rivest test for extreme‐value dependence , 2009 .

[63]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[64]  Alexandru V. Asimit,et al.  Extreme Behavior of Bivariate Elliptical Distributions , 2006 .

[65]  J. Angus The Asymptotic Theory of Extreme Order Statistics , 1990 .

[66]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[67]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[68]  E. J. Gumbel,et al.  Analysis of Empirical Bivariate Extremal Distributions , 1964 .

[69]  Projection estimators of Pickands dependence functions , 2008 .

[70]  Mathieu Vrac,et al.  Autoregressive models for maxima and their applications to CH4 and N2O , 2009 .

[71]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[72]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[73]  Cláudia Neves,et al.  Extreme Value Distributions , 2011, International Encyclopedia of Statistical Science.

[74]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[75]  Liang Peng,et al.  Nonparametric estimation of the dependence function for a multivariate extreme value distribution , 2008 .

[76]  Johan Segers,et al.  A Method of Moments Estimator of Tail Dependence , 2007 .

[77]  L. Haan,et al.  Parametric tail copula estimation and model testing , 2008 .

[78]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[79]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[80]  Johan Segers,et al.  Nonparametric estimation of an extreme-value copula in arbitrary dimensions , 2009, J. Multivar. Anal..

[81]  Ana Isabel Garralda Guillem Structure de dépendance des lois de valeurs extrêmes bivariées , 2000 .

[82]  Michel Denuit,et al.  Analysis of bivariate tail dependence using extreme value copulas: An application to the SOA medical large claims database , 2003 .

[83]  Jan-Frederik Mai,et al.  Lévy-frailty copulas , 2009, J. Multivar. Anal..

[84]  Convergence of Archimedean Copulas , 2008 .

[85]  L. Haan,et al.  Nonparametric estimation of the spectral measure of an extreme value distribution , 2001 .

[86]  J. Tiago de Oliveira Regression in the Nondifferentiable Bivariate Extreme Models , 1974 .

[87]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[88]  Werner Hürlimann,et al.  Hutchinson-Lai's Conjecture for Bivariate Extreme Value Copulas , 2002 .

[89]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[90]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .