Image numérique, GMRES et polynômes de Faber

Resume Soit F n le polynome de Faber de degre n associe a l'image numerique d'un operateur lineaire continu A sur un espace de Hilbert. Nous montrons dans un premier temps que ‖ F n ( A ) ‖ ⩽ 2 . Nous en deduisons ensuite, en terme d'image numerique, de nouvelles estimations d'erreur pour la methode GMRES, methode iterative adaptee a la resolution des systemes lineaires non-hermitiens. Pour citer cet article : B. Beckermann, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

[1]  Ch. Pommerenke,et al.  On faber polynomials and faber expansions , 1967 .

[2]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[3]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[4]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[5]  Bernard Delyon,et al.  Some estimates for analytic functions of strip or sectorial operators , 2003 .

[6]  Eugene E. Tyrtyshnikov,et al.  Some Remarks on the Elman Estimate for GMRES , 2005, SIAM J. Matrix Anal. Appl..

[7]  Spectral Inclusion and Analytic Continuation , 1999 .

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Kim-Chuan Toh,et al.  The Kreiss Matrix Theorem on a General Complex Domain , 1999, SIAM J. Matrix Anal. Appl..

[10]  Bernard Delyon,et al.  Convex domains and K-spectral sets , 2005, math/0501184.

[11]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[12]  M. Crouzeix Operators with numerical range in a parabola , 2004 .

[13]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[14]  Bernard Delyon,et al.  Generalization of von Neumann's spectral sets and integral representation of operators , 1999 .

[15]  Tobin A. Driscoll,et al.  Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.