Notes on Dual Concatenation

It was recently found that concatenation of formal languages has a logical dual (A. Okhotin, The dual of concatenation, Theoret. Comput. Sci., 345 (2005), 425–447). In this paper, the closure or nonclosure of common language families under dual concatenation with finite, co-finite and regular languages is determined. In addition, language equations with union, linear concatenation and dual concatenation with co-finite constants are shown to be almost equal in power to linear conjunctive grammars.

[1]  Peter Weiner,et al.  An infinite hierarchy of intersections of context-free languages , 1973, Mathematical systems theory.

[2]  Alexander Okhotin,et al.  The dual of concatenation , 2005, Theor. Comput. Sci..

[3]  Lila Kari,et al.  On Language Equations with Invertible Operations , 1994, Theor. Comput. Sci..

[4]  Martin Kutrib,et al.  The Boolean Closure of Linear Context-Free Languages , 2004, Developments in Language Theory.

[5]  Michael Domaratzki More Words on Trajectories , 2005, Bull. EATCS.

[6]  Michael A. Harrison,et al.  Introduction to formal language theory , 1978 .

[7]  Jean-Camille Birget The State Complexity of \Sigma * L and its Connection with Temporal Logic , 1996, Inf. Process. Lett..

[8]  Alexander Okhotin Boolean grammars , 2004, Inf. Comput..

[9]  Arto Salomaa,et al.  Aspects of Classical Language Theory , 1997, Handbook of Formal Languages.

[10]  Gheorghe Paun,et al.  Conditional Concatenation , 2000, Fundam. Informaticae.

[11]  Michael Domaratzki,et al.  Decidability of Trajectory-Based Equations , 2004, MFCS.

[12]  Alexander Okhotin,et al.  On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..

[13]  Victor Mitrana,et al.  Operations and language generating devices suggested by the genome evolution , 2002, Theor. Comput. Sci..

[14]  Alexander Okhotin,et al.  Conjunctive Grammars , 2001, J. Autom. Lang. Comb..

[15]  Detlef Wotschke,et al.  Nondeterminism and Boolean Operations in PDAs , 1978, J. Comput. Syst. Sci..

[16]  Grzegorz Rozenberg,et al.  Shuffle on Trajectories: Syntactic Constraints , 1998, Theor. Comput. Sci..

[17]  M. Domaratzki,et al.  Trajectory-based operations , 2004 .