Notes on Dual Concatenation
暂无分享,去创建一个
[1] Peter Weiner,et al. An infinite hierarchy of intersections of context-free languages , 1973, Mathematical systems theory.
[2] Alexander Okhotin,et al. The dual of concatenation , 2005, Theor. Comput. Sci..
[3] Lila Kari,et al. On Language Equations with Invertible Operations , 1994, Theor. Comput. Sci..
[4] Martin Kutrib,et al. The Boolean Closure of Linear Context-Free Languages , 2004, Developments in Language Theory.
[5] Michael Domaratzki. More Words on Trajectories , 2005, Bull. EATCS.
[6] Michael A. Harrison,et al. Introduction to formal language theory , 1978 .
[7] Jean-Camille Birget. The State Complexity of \Sigma * L and its Connection with Temporal Logic , 1996, Inf. Process. Lett..
[8] Alexander Okhotin. Boolean grammars , 2004, Inf. Comput..
[9] Arto Salomaa,et al. Aspects of Classical Language Theory , 1997, Handbook of Formal Languages.
[10] Gheorghe Paun,et al. Conditional Concatenation , 2000, Fundam. Informaticae.
[11] Michael Domaratzki,et al. Decidability of Trajectory-Based Equations , 2004, MFCS.
[12] Alexander Okhotin,et al. On the equivalence of linear conjunctive grammars and trellis automata , 2004, RAIRO Theor. Informatics Appl..
[13] Victor Mitrana,et al. Operations and language generating devices suggested by the genome evolution , 2002, Theor. Comput. Sci..
[14] Alexander Okhotin,et al. Conjunctive Grammars , 2001, J. Autom. Lang. Comb..
[15] Detlef Wotschke,et al. Nondeterminism and Boolean Operations in PDAs , 1978, J. Comput. Syst. Sci..
[16] Grzegorz Rozenberg,et al. Shuffle on Trajectories: Syntactic Constraints , 1998, Theor. Comput. Sci..
[17] M. Domaratzki,et al. Trajectory-based operations , 2004 .