Resource and Knowledge Discovery in Global Information Systems: A Scalable Multiple Layered Database Approach

With huge amounts of information connected to the global information network (Internet), e cient and e ective discovery of resource and knowledge from the \global information base" has become an imminent research issue, especially with the advent of the Information SuperHighway. In this article, a multiple layered database (MLDB) approach is proposed to handle the resource and knowledge discovery in global information base. A multiple layered database is a database formed by generalization and transformation of the information, layer-by-layer, starting from the original information base (treated as layer-0, the primitive layer). Information retrieval, data mining, and data analysis techniques can be used to extract and transform information from a lower layer database to a higher one. Layer-1 and higher layers of an MLDB can be modeled by an extended-relational or object-oriented model, constructed automatically, and updated incrementally. Information at all the layers except the primitive one can be stored, managed and retrieved by the available database technology; resources can be found by controlled search through di erent layers of the database; and knowledge discovery can be performed e ciently in such a multiple layered database.

[1]  Abraham Silberschatz,et al.  A Multi-Resolution Relational Data Model , 1992, VLDB.

[2]  Richard S. Hall,et al.  A case for caching file objects inside internetworks , 1993, SIGCOMM '93.

[3]  Jiawei Han,et al.  DBLearn: a system prototype for knowledge discovery in relational databases , 1994, SIGMOD '94.

[4]  B. Clifford Neuman,et al.  A Comparison of Internet Resource Discovery Approaches , 1992, Comput. Syst..

[5]  Tomasz Imielinski,et al.  An Interval Classifier for Database Mining Applications , 1992, VLDB.

[6]  Ramez Elmasri,et al.  Fundamentals of Database Systems , 1989 .

[7]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[8]  Peter B. Danzig,et al.  Harvest: A Scalable, Customizable Discovery and Access System , 1994 .

[9]  Martijn Koster,et al.  ALIWEB - Archie-like Indexing in the WEB , 1994, Comput. Networks ISDN Syst..

[10]  Brewster Kahle,et al.  An information system for corporate users: wide area information servers , 1991 .

[11]  Douglas H. Fisher,et al.  Improving Inference through Conceptual Clustering , 1987, AAAI.

[12]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[13]  B. de Ville Applying statistical knowledge to database analysis and knowledge base construction , 1990, Sixth Conference on Artificial Intelligence for Applications.

[14]  David Eichmann,et al.  The RBSE spider — Balancing effective search against Web load , 1994, WWW Spring 1994.

[15]  Peter B. Danzig,et al.  Scalable Internet resource discovery: research problems and approaches , 1994, CACM.

[16]  Oliver A. McBryan,et al.  GENVL and WWWW: Tools for taming the Web , 1994, WWW Spring 1994.

[17]  Darren R. Hardy,et al.  Essence: A Resource Discovery System Based on Semantic File Indexing , 1993, USENIX Winter.

[18]  Jiawei Han,et al.  Data-Driven Discovery of Quantitative Rules in Relational Databases , 1993, IEEE Trans. Knowl. Data Eng..

[19]  Jiawei Han,et al.  Cooperative Query Answering Using Multiple Layered Databases , 1994, CoopIS.

[20]  Jiawei Han,et al.  Resource and Knowledge Discovery in Global Information Systems: A Multiple Layered Database Approach , 1995 .

[21]  Rafael Alonso,et al.  Data caching issues in an information retrieval system , 1990, TODS.

[22]  Tim Berners-Lee,et al.  The World-Wide Web , 1994, CACM.