Moving horizon numerical observers of nonlinear control systems
暂无分享,去创建一个
[1] C. Desoer,et al. Feedback Systems: Input-Output Properties , 1975 .
[2] Wei Kang,et al. A Pseudospectral Observer for Nonlinear Systems , 2005 .
[3] J. Gauthier,et al. A simple observer for nonlinear systems applications to bioreactors , 1992 .
[4] Larry Nazareth,et al. A family of variable metric updates , 1977, Math. Program..
[5] Shirley J. Dyke,et al. PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .
[6] Arthur J. Krener,et al. Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..
[7] D. Goldfarb. A family of variable-metric methods derived by variational means , 1970 .
[8] David Q. Mayne,et al. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..
[9] A. Krener,et al. Nonlinear observers with linearizable error dynamics , 1985 .
[10] C. Kravaris,et al. Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[11] J. Grizzle,et al. Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..
[12] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[13] D. Bestle,et al. Canonical form observer design for non-linear time-variable systems , 1983 .
[14] Christopher I. Byrnes,et al. Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..
[15] Mazen Alamir,et al. Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..
[16] Greg Foliente,et al. Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .
[17] F. Ikhouane,et al. On the Hysteretic Bouc–Wen Model , 2005 .
[18] Seung-Ik Lee,et al. A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .
[19] G. Zimmer. State observation by on-line minimization , 1994 .
[20] D. Mayne,et al. Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..
[21] F. Allgower,et al. Efficient output feedback nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[22] Toshiyuki Ohtsuka,et al. Nonlinear receding-horizon state estimation by real-time optimization technique , 1996 .
[23] J. Hale,et al. Dynamics and Bifurcations , 1991 .
[24] Zhong-Ping Jiang,et al. Robust nonlinear integral control , 2001, IEEE Trans. Autom. Control..
[25] T. Low,et al. Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .
[26] Mohamed Djemai,et al. Cryptography by discrete-time hyperchaotic systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[27] Stephen J. Wright,et al. Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .
[28] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[29] José Rodellar,et al. Adaptive control of a hysteretic structural system , 2005, Autom..
[30] Jie Huang,et al. Solution of output regulation of singular nonlinear systems by normal output feedback , 2002, IEEE Trans. Autom. Control..
[31] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .
[32] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[33] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[34] Yi Guo,et al. An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis , 1999, IEEE Trans. Control. Syst. Technol..
[35] Elias B. Kosmatopoulos,et al. Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .