Moving horizon numerical observers of nonlinear control systems

In this note, we develop moving horizon numerical observers and analyze the error. In the error estimation, we take into consideration both the integration error and the optimization error. The design facilitates the use of a variety of numerical algorithms to form different observers. As a special case, an Euler-Newton observer is introduced. The numerical observer is independent of any optimization software or toolbox. Furthermore, the observer is formulated in a way that is especially efficient for systems with sampled measurement.

[1]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[2]  Wei Kang,et al.  A Pseudospectral Observer for Nonlinear Systems , 2005 .

[3]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[4]  Larry Nazareth,et al.  A family of variable metric updates , 1977, Math. Program..

[5]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[6]  Arthur J. Krener,et al.  Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..

[7]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[8]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[9]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[10]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[12]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[13]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[14]  Christopher I. Byrnes,et al.  Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation , 2003, IEEE Trans. Autom. Control..

[15]  Mazen Alamir,et al.  Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..

[16]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[17]  F. Ikhouane,et al.  On the Hysteretic Bouc–Wen Model , 2005 .

[18]  Seung-Ik Lee,et al.  A hysteresis model for the field-dependent damping force of a magnetorheological damper , 2001 .

[19]  G. Zimmer State observation by on-line minimization , 1994 .

[20]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[21]  F. Allgower,et al.  Efficient output feedback nonlinear model predictive control , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[22]  Toshiyuki Ohtsuka,et al.  Nonlinear receding-horizon state estimation by real-time optimization technique , 1996 .

[23]  J. Hale,et al.  Dynamics and Bifurcations , 1991 .

[24]  Zhong-Ping Jiang,et al.  Robust nonlinear integral control , 2001, IEEE Trans. Autom. Control..

[25]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[26]  Mohamed Djemai,et al.  Cryptography by discrete-time hyperchaotic systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[27]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[28]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[29]  José Rodellar,et al.  Adaptive control of a hysteretic structural system , 2005, Autom..

[30]  Jie Huang,et al.  Solution of output regulation of singular nonlinear systems by normal output feedback , 2002, IEEE Trans. Autom. Control..

[31]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[32]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[33]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[34]  Yi Guo,et al.  An H∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis , 1999, IEEE Trans. Control. Syst. Technol..

[35]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .