Equilibrium measures for maps with inducing schemes
暂无分享,去创建一个
[1] Neil B. Dobbs. Renormalisation-Induced Phase Transitions for Unimodal Maps , 2007, 0712.3023.
[2] Mike Todd,et al. Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f) , 2008 .
[3] Y. Pesin,et al. Lifting measures to inducing schemes , 2007, Ergodic Theory and Dynamical Systems.
[4] M. Todd,et al. Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f) , 2007, 0708.0374.
[5] Equilibrium states for interval maps: potentials of bounded range , 2007 .
[6] M. Todd,et al. Equilibrium states for interval maps: the potential $-t\log |Df|$ , 2007, 0704.2199.
[7] Mike Todd,et al. Markov extensions and lifting measures for complex polynomials , 2005, Ergodic Theory and Dynamical Systems.
[8] Distortion bounds for $C^{2+η}$ unimodal maps , 2007 .
[9] Y. Pesin,et al. THERMODYNAMICS OF INDUCING SCHEMES AND LIFTABILITY OF MEASURES , 2007 .
[10] Anna Mummert. A variational principle for discontinuous potentials , 2006, Ergodic Theory and Dynamical Systems.
[11] S. V. Strien,et al. Erratum to “Real bounds, ergodicity and negative Schwarzian for multimodal maps” , 2006 .
[12] Y. Pesin,et al. Phase Transitions for Uniformly Expanding Maps , 2006 .
[13] Neil B. Dobbs. Critical points, cusps and induced expansion in dimension one , 2006 .
[14] Y. Pesin,et al. Thermodynamical Formalism Associated with Inducing Schemes for One-dimensional Maps , 2005, math/0511599.
[15] Roland Zweimüller. Invariant measures for general(ized) induced transformations , 2005 .
[16] S. V. Strien,et al. Real bounds, ergodicity and negative Schwarzian for multimodal maps , 2004 .
[17] H. Bruin,et al. Expansion of derivatives in one-dimensional dynamics , 2003 .
[18] J. Buzzi,et al. Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps , 2003, Ergodic Theory and Dynamical Systems.
[19] C. Moreira,et al. Phase-parameter relation and sharp statistical properties for general families of unimodal maps , 2003, math/0306156.
[20] O. Sarig. Existence of gibbs measures for countable Markov shifts , 2003 .
[21] S. Senti. Dimension of weakly expanding points for quadratic maps , 2003 .
[22] A. Armando,et al. Backward inducing and exponential decay of correlations for partially hyperbolic attractors , 2002 .
[23] H. Bruin,et al. Decay of correlations in one-dimensional dynamics , 2002, math/0208114.
[24] O. Sarig. Thermodynamic formalism for null recurrent potentials , 2001 .
[25] R. Mauldin,et al. Gibbs states on the symbolic space over an infinite alphabet , 2001 .
[26] C. Moreira,et al. Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative , 2001, math/0105221.
[27] Lai-Sang Young,et al. Strange Attractors with One Direction of Instability , 2001 .
[28] O. Sarig. Phase Transitions for Countable Markov Shifts , 2001 .
[29] Lai-Sang Young,et al. Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.
[30] O. Kozlovski. Getting rid of the negative Schwarzian derivative condition , 2000, math/0011266.
[31] D. Dolgopyat. On Dynamics of Mostly Contracting Diffeomorphisms , 2000 .
[32] Samuel Senti. Dimension de hausdorff de l'ensemble exceptionnel dans le theoreme de jakobson , 2000 .
[33] Jérôme Dedecker,et al. On the functional central limit theorem for stationary processes , 2000 .
[34] N. Chernov,et al. Decay of correlations for Lorentz gases and hard balls , 2000 .
[35] Omri Sarig,et al. Thermodynamic formalism for countable Markov shifts , 1999, Ergodic Theory and Dynamical Systems.
[36] M. Yuri. Thermodynamic formalism for certain nonhyperbolic maps , 1999, Ergodic Theory and Dynamical Systems.
[37] Hans Crauel,et al. AN INTRODUCTION TO INFINITE ERGODIC THEORY (Mathematical Surveys and Monographs 50) , 1999 .
[38] G. Keller,et al. Equilibrium states for S-unimodal maps , 1998, Ergodic Theory and Dynamical Systems.
[39] L. Young,et al. STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .
[40] Jon Aaronson,et al. An introduction to infinite ergodic theory , 1997 .
[41] G. Swiatek,et al. Metric properties of non-renormalizable S-unimodal maps: II. Quasisymmetric conjugacy classes , 1995, Ergodic Theory and Dynamical Systems.
[42] H. Bruin. Induced maps, Markov extensions and invariant measures in one-dimensional dynamics , 1995 .
[43] Carlangelo Liverani,et al. Central Limit Theorem for Deterministic Systems , 1995 .
[44] C. Tresser,et al. Positive Lyapunov exponent for generic one-parameter families of unimodal maps , 1994 .
[45] M. Denker,et al. Ergodic theory for Markov fibred systems and parabolic rational maps , 1993 .
[46] G. Keller. Lifting measures to Markov extensions , 1989 .
[47] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[48] J. Guckenheimer. ONE‐DIMENSIONAL DYNAMICS * , 1980 .
[49] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[50] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II , 1979 .
[51] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy , 1979 .
[52] F. Schweiger. Some remarks on ergodicity and invariant measures. , 1975 .
[53] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[54] J. Neveu. Une démonstration simplifiée et une extension de la formule d'Abramov sur l'entropie des transformations induites , 1969 .
[55] A. Masood,et al. Can Food Inflation Be Stabilized By Monetary Policy? A Quantile Regression Approach , 2022, Journal of Economic Impact.