Equilibrium measures for maps with inducing schemes

We introducea class of continuousmaps f of a compact topologi- cal space I admitting inducing schemes and describe the tower constructions associated with them. We then establish a thermodynamicformalism, i.e., de- scribe a class of real-valued potential functions ϕ on I, which admit a unique equilibrium measure ¹ ϕ minimizing the free energy for a certain class of in- variant measures. We also describe ergodic properties of equilibrium mea- sures, including decay of correlation and the Central Limit Theorem. Our re- sults apply to certain maps of the interval with critical points and/or singular- ities (including some unimodal and multimodal maps) and to potential func- tions ϕt =−t log|d f | with t ∈(t0,t1) for some t0 < 1< t1. In theparticularcase of S-unimodal maps we show that one can choose t0 < 0 and that the class of measures under consideration consists of all invariant Borel probability mea- sures.

[1]  Neil B. Dobbs Renormalisation-Induced Phase Transitions for Unimodal Maps , 2007, 0712.3023.

[2]  Mike Todd,et al.  Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f) , 2008 .

[3]  Y. Pesin,et al.  Lifting measures to inducing schemes , 2007, Ergodic Theory and Dynamical Systems.

[4]  M. Todd,et al.  Equilibrium States for Interval Maps: Potentials with sup φ − inf φ < htop(f) , 2007, 0708.0374.

[5]  Equilibrium states for interval maps: potentials of bounded range , 2007 .

[6]  M. Todd,et al.  Equilibrium states for interval maps: the potential $-t\log |Df|$ , 2007, 0704.2199.

[7]  Mike Todd,et al.  Markov extensions and lifting measures for complex polynomials , 2005, Ergodic Theory and Dynamical Systems.

[8]  Distortion bounds for $C^{2+η}$ unimodal maps , 2007 .

[9]  Y. Pesin,et al.  THERMODYNAMICS OF INDUCING SCHEMES AND LIFTABILITY OF MEASURES , 2007 .

[10]  Anna Mummert A variational principle for discontinuous potentials , 2006, Ergodic Theory and Dynamical Systems.

[11]  S. V. Strien,et al.  Erratum to “Real bounds, ergodicity and negative Schwarzian for multimodal maps” , 2006 .

[12]  Y. Pesin,et al.  Phase Transitions for Uniformly Expanding Maps , 2006 .

[13]  Neil B. Dobbs Critical points, cusps and induced expansion in dimension one , 2006 .

[14]  Y. Pesin,et al.  Thermodynamical Formalism Associated with Inducing Schemes for One-dimensional Maps , 2005, math/0511599.

[15]  Roland Zweimüller Invariant measures for general(ized) induced transformations , 2005 .

[16]  S. V. Strien,et al.  Real bounds, ergodicity and negative Schwarzian for multimodal maps , 2004 .

[17]  H. Bruin,et al.  Expansion of derivatives in one-dimensional dynamics , 2003 .

[18]  J. Buzzi,et al.  Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps , 2003, Ergodic Theory and Dynamical Systems.

[19]  C. Moreira,et al.  Phase-parameter relation and sharp statistical properties for general families of unimodal maps , 2003, math/0306156.

[20]  O. Sarig Existence of gibbs measures for countable Markov shifts , 2003 .

[21]  S. Senti Dimension of weakly expanding points for quadratic maps , 2003 .

[22]  A. Armando,et al.  Backward inducing and exponential decay of correlations for partially hyperbolic attractors , 2002 .

[23]  H. Bruin,et al.  Decay of correlations in one-dimensional dynamics , 2002, math/0208114.

[24]  O. Sarig Thermodynamic formalism for null recurrent potentials , 2001 .

[25]  R. Mauldin,et al.  Gibbs states on the symbolic space over an infinite alphabet , 2001 .

[26]  C. Moreira,et al.  Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative , 2001, math/0105221.

[27]  Lai-Sang Young,et al.  Strange Attractors with One Direction of Instability , 2001 .

[28]  O. Sarig Phase Transitions for Countable Markov Shifts , 2001 .

[29]  Lai-Sang Young,et al.  Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.

[30]  O. Kozlovski Getting rid of the negative Schwarzian derivative condition , 2000, math/0011266.

[31]  D. Dolgopyat On Dynamics of Mostly Contracting Diffeomorphisms , 2000 .

[32]  Samuel Senti Dimension de hausdorff de l'ensemble exceptionnel dans le theoreme de jakobson , 2000 .

[33]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[34]  N. Chernov,et al.  Decay of correlations for Lorentz gases and hard balls , 2000 .

[35]  Omri Sarig,et al.  Thermodynamic formalism for countable Markov shifts , 1999, Ergodic Theory and Dynamical Systems.

[36]  M. Yuri Thermodynamic formalism for certain nonhyperbolic maps , 1999, Ergodic Theory and Dynamical Systems.

[37]  Hans Crauel,et al.  AN INTRODUCTION TO INFINITE ERGODIC THEORY (Mathematical Surveys and Monographs 50) , 1999 .

[38]  G. Keller,et al.  Equilibrium states for S-unimodal maps , 1998, Ergodic Theory and Dynamical Systems.

[39]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[40]  Jon Aaronson,et al.  An introduction to infinite ergodic theory , 1997 .

[41]  G. Swiatek,et al.  Metric properties of non-renormalizable S-unimodal maps: II. Quasisymmetric conjugacy classes , 1995, Ergodic Theory and Dynamical Systems.

[42]  H. Bruin Induced maps, Markov extensions and invariant measures in one-dimensional dynamics , 1995 .

[43]  Carlangelo Liverani,et al.  Central Limit Theorem for Deterministic Systems , 1995 .

[44]  C. Tresser,et al.  Positive Lyapunov exponent for generic one-parameter families of unimodal maps , 1994 .

[45]  M. Denker,et al.  Ergodic theory for Markov fibred systems and parabolic rational maps , 1993 .

[46]  G. Keller Lifting measures to Markov extensions , 1989 .

[47]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[48]  J. Guckenheimer ONE‐DIMENSIONAL DYNAMICS * , 1980 .

[49]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[50]  F. Hofbauer On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II , 1979 .

[51]  F. Hofbauer On intrinsic ergodicity of piecewise monotonic transformations with positive entropy , 1979 .

[52]  F. Schweiger Some remarks on ergodicity and invariant measures. , 1975 .

[53]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[54]  J. Neveu Une démonstration simplifiée et une extension de la formule d'Abramov sur l'entropie des transformations induites , 1969 .

[55]  A. Masood,et al.  Can Food Inflation Be Stabilized By Monetary Policy? A Quantile Regression Approach , 2022, Journal of Economic Impact.