Matrix Calculus for Classical and Quantum Circuits

Quantum computation on <i>w</i> qubits is represented by the infinite unitary group U(2<sup><i>w</i></sup>); classical reversible computation on <i>w</i> bits is represented by the finite symmetric group <b>S</b><sub>2</sub><sup><i>w</i></sup>. In order to establish the relationship between classical reversible computing and quantum computing, we introduce two Lie subgroups XU(<i>n</i>) and ZU(<i>n</i>) of the unitary group U(<i>n</i>). The former consists of all unitary <i>n</i> × <i>n</i> matrices with all line sums equal to 1; the latter consists of all unitary diagonal <i>n</i> × <i>n</i> matrices with first entry equal to 1. Such a group structure also reveals the relationship between matrix calculus and diagrammatic zx-calculus of quantum circuits.

[1]  Alexis De Vos,et al.  Decomposition of a Linear Reversible Computer: Digital Versus Analog , 2010, Int. J. Unconv. Comput..

[2]  Miriam Backens,et al.  The ZX-calculus is complete for stabilizer quantum mechanics , 2013, 1307.7025.

[3]  Alexis De Vos,et al.  The NEGATOR as a Basic Building Block for Quantum Circuits , 2013, Open Syst. Inf. Dyn..

[4]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[5]  A. Hurwitz,et al.  über die Erzeugung der Invarianten durch Integration , 1963 .

[6]  S. Baerdemacker,et al.  Logics between classical reversible logic and quantum logic , 2012 .

[7]  Kalyan S. Perumalla,et al.  Introduction to Reversible Computing , 2013 .

[9]  John Stillwell,et al.  Naive Lie Theory , 2008 .

[10]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Alexis De Vos,et al.  Garbageless Reversible Implementation of Integer Linear Transformations , 2012, RC.

[12]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[13]  Roger Penrose,et al.  A complete guide to the laws of the universe , 2005 .

[14]  Bob Coecke,et al.  Tutorial: Graphical Calculus for Quantum Circuits , 2012, RC.

[15]  Noson S. Yanofsky,et al.  Quantum Computing for Computer Scientists , 2008 .

[16]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[17]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[18]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[19]  Rolf Drechsler,et al.  On quantum circuits employing roots of the Pauli matrices , 2013, ArXiv.

[20]  Alexis De Vos,et al.  The Roots of the NOT Gate , 2012, ISMVL.

[21]  Jan De Beule,et al.  Computing with the Square Root of NOT , 2009 .

[22]  Steven Vandenbrande,et al.  The Group of Dyadic Unitary Matrices , 2012, Open Syst. Inf. Dyn..

[23]  B. Blank The Road to Reality : A Complete Guide to the Laws of the Universe , 2006 .

[24]  G. M.,et al.  An Introduction to the Theory of Groups of Finite Order , 1908, Nature.

[25]  A. D. Vos,et al.  Almost-classical quantum computers , 2010 .

[26]  Robert Wille,et al.  Towards a Design Flow for Reversible Logic , 2010 .

[27]  Teodor Banica,et al.  Liberation of orthogonal Lie groups , 2008, 0808.2628.

[28]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[29]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.