Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence
暂无分享,去创建一个
[1] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .
[2] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[3] J. Dieudonné,et al. Sur la réduction canonique des couples de matrices , 1946 .
[4] R. C. Thompson,et al. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .
[5] Yik-Hoi Au-Yeung. A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two hermitian matrices , 1969 .
[6] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[7] H. Langer,et al. On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .
[8] Peter Lancaster,et al. Inverse spectral problems for linear and quadratic matrix pencils , 1988 .
[9] M. G. Krein,et al. The Basic Propositions of the Theory of λ-Zones of Stability of a Canonical System of Linear Differential Equations with Periodic Coefficients , 1983 .
[10] P. Lancaster,et al. Factorization of selfadjoint matrix polynomials with constant signature , 1982 .
[11] T. C. Brown,et al. Foundations of Linear Algebra. , 1968 .
[12] Richard A. Silverman,et al. An introduction to the theory of linear spaces , 1963 .
[13] Yik-hoi Au-yeung. SOME THEOREMS ON THE REAL PENCIL AND SIMULTANEOUS DIAGONALIZATION OF TWO HERMITIAN BILINEAR FUNCTIONS , 1969 .
[14] K. S. Banerjee. Generalized Inverse of Matrices and Its Applications , 1973 .
[15] F. R. Gantmakher. The Theory of Matrices , 1984 .
[16] Paul Pinsler. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .
[17] P. Lancaster,et al. Invariant subspaces of matrices with applications , 1986 .
[18] C. R. Rao,et al. Generalized Inverse of Matrices and its Applications , 1972 .
[19] L. W.,et al. The Theory of Sound , 1898, Nature.
[20] André C. M. Ran,et al. Minimal factorization of selfadjoint rational matrix functions , 1982 .
[21] R. C. Thompson,et al. Pencils of complex and real symmetric and skew matrices , 1991 .
[22] G. Richard Trott. On the Canonical Form of a Non-Singular Pencil of Hermitian Matrices , 1934 .
[23] P. Lancaster,et al. Variational Properties and Rayleigh Quotient Algorithms for Symmetric Matrix Pencils , 1989 .
[24] Jean-Baptiste Lully,et al. The collected works , 1996 .
[25] Leiba Rodman,et al. Stable Invariant Lagrangian Subspaces: Factorization of Symmetric Rational Matrix Functions and Other Applications , 1990 .
[26] Peter Lancaster,et al. The theory of matrices , 1969 .
[27] T. Azizov,et al. Linear Operators in Spaces with an Indefinite Metric , 1989 .
[28] Leiba Rodman,et al. Minimal symmetric factorizations of symmetric real and complex rational matrix functions , 1995 .
[29] H. Langer,et al. Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .
[30] H. Langer,et al. On some mathematical principles in the linear theory of damped oscillations of continua I , 1978 .
[31] Marvin Marcus,et al. Pencils of real symmetric matrices and the numerical range , 1977 .
[32] John Williamson. The Equivalence of Non-Singular Pencils of Hermitian Matrices in an Arbitrary Field , 1935 .
[33] John Williamson. Note on the equivalence of nonsingular pencils of Hermitian matrices , 1945 .
[34] V. Mehrmann,et al. Canonical forms for doubly structured matrices and pencils , 2000 .
[35] M. H. Ingraham,et al. The equivalence of pairs of Hermitian matrices , 1935 .
[36] H. W Turnbull. An introduction to the theory of canonical matrices, by H.W. Turnbull and A.C. Aitken , 1945 .
[37] Loo-Keng Hua,et al. On the Theory of Automorphic Functions of a Matrix Variable, II-The Classification of Hypercircles Under the Symplectic Group , 1944 .
[38] F. Gantmacher,et al. Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .
[39] W. Greub. Linear Algebra , 1981 .
[40] Leiba Rodman,et al. Stability of Invariant Lagrangian Subspaces II , 1989 .
[41] M. G. Kreĭn,et al. Introduction to the geometry of indefinite -spaces and to the theory of operators in those spaces , 1970 .
[42] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[43] F. Uhlig. A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .
[44] Leiba Rodman,et al. Spectral analysis of selfadjoint matrix polynomials , 1980 .
[45] D. E. Littlewood,et al. Introduction to Matrices and Linear Transformations , 1961 .
[46] V. Mehrmann,et al. Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .
[47] Daniel T. Finkbeiner. Introduction to matrices and linear transformations / Daniel T. Finkbeiner II , 1978 .
[48] L. Brickman. ON THE FIELD OF VALUES OF A MATRIX , 1961 .
[49] H. W. Turnbull. On the Equivalence of Pencils of Hermitian Forms , 1935 .
[50] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[51] David W. Lewis,et al. Matrix theory , 1991 .
[52] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[53] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[54] A. I. Malʹt︠s︡ev. Foundations of linear algebra , 1963 .
[55] M. Hestenes. Pairs of quadratic forms , 1968 .