Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence

After a brief historical review and an account of the canonical forms attributed to Jordan and Kronecker, a systematic development is made of the simultaneous reduction of pairs of quadratic forms over the complex numbers and over the reals. These reductions are by strict equivalence and by congruence, and essentially complete proofs are presented. Some closely related results which can be derived from the canonical forms are also included. They concern simultaneous diagonalization, a new criterion for the existence of positive definite linear combinations of a pair of Hermitian matrices, and the canonical structures of matrices which are self-adjoint in an indefinite inner product.

[1]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[2]  Volker Mehrmann,et al.  Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .

[3]  J. Dieudonné,et al.  Sur la réduction canonique des couples de matrices , 1946 .

[4]  R. C. Thompson,et al.  The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .

[5]  Yik-Hoi Au-Yeung A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two hermitian matrices , 1969 .

[6]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[7]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .

[8]  Peter Lancaster,et al.  Inverse spectral problems for linear and quadratic matrix pencils , 1988 .

[9]  M. G. Krein,et al.  The Basic Propositions of the Theory of λ-Zones of Stability of a Canonical System of Linear Differential Equations with Periodic Coefficients , 1983 .

[10]  P. Lancaster,et al.  Factorization of selfadjoint matrix polynomials with constant signature , 1982 .

[11]  T. C. Brown,et al.  Foundations of Linear Algebra. , 1968 .

[12]  Richard A. Silverman,et al.  An introduction to the theory of linear spaces , 1963 .

[13]  Yik-hoi Au-yeung SOME THEOREMS ON THE REAL PENCIL AND SIMULTANEOUS DIAGONALIZATION OF TWO HERMITIAN BILINEAR FUNCTIONS , 1969 .

[14]  K. S. Banerjee Generalized Inverse of Matrices and Its Applications , 1973 .

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  Paul Pinsler Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen , 1936 .

[17]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[18]  C. R. Rao,et al.  Generalized Inverse of Matrices and its Applications , 1972 .

[19]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[20]  André C. M. Ran,et al.  Minimal factorization of selfadjoint rational matrix functions , 1982 .

[21]  R. C. Thompson,et al.  Pencils of complex and real symmetric and skew matrices , 1991 .

[22]  G. Richard Trott On the Canonical Form of a Non-Singular Pencil of Hermitian Matrices , 1934 .

[23]  P. Lancaster,et al.  Variational Properties and Rayleigh Quotient Algorithms for Symmetric Matrix Pencils , 1989 .

[24]  Jean-Baptiste Lully,et al.  The collected works , 1996 .

[25]  Leiba Rodman,et al.  Stable Invariant Lagrangian Subspaces: Factorization of Symmetric Rational Matrix Functions and Other Applications , 1990 .

[26]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[27]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[28]  Leiba Rodman,et al.  Minimal symmetric factorizations of symmetric real and complex rational matrix functions , 1995 .

[29]  H. Langer,et al.  Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .

[30]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscillations of continua I , 1978 .

[31]  Marvin Marcus,et al.  Pencils of real symmetric matrices and the numerical range , 1977 .

[32]  John Williamson The Equivalence of Non-Singular Pencils of Hermitian Matrices in an Arbitrary Field , 1935 .

[33]  John Williamson Note on the equivalence of nonsingular pencils of Hermitian matrices , 1945 .

[34]  V. Mehrmann,et al.  Canonical forms for doubly structured matrices and pencils , 2000 .

[35]  M. H. Ingraham,et al.  The equivalence of pairs of Hermitian matrices , 1935 .

[36]  H. W Turnbull An introduction to the theory of canonical matrices, by H.W. Turnbull and A.C. Aitken , 1945 .

[37]  Loo-Keng Hua,et al.  On the Theory of Automorphic Functions of a Matrix Variable, II-The Classification of Hypercircles Under the Symplectic Group , 1944 .

[38]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[39]  W. Greub Linear Algebra , 1981 .

[40]  Leiba Rodman,et al.  Stability of Invariant Lagrangian Subspaces II , 1989 .

[41]  M. G. Kreĭn,et al.  Introduction to the geometry of indefinite -spaces and to the theory of operators in those spaces , 1970 .

[42]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[43]  F. Uhlig A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .

[44]  Leiba Rodman,et al.  Spectral analysis of selfadjoint matrix polynomials , 1980 .

[45]  D. E. Littlewood,et al.  Introduction to Matrices and Linear Transformations , 1961 .

[46]  V. Mehrmann,et al.  Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .

[47]  Daniel T. Finkbeiner Introduction to matrices and linear transformations / Daniel T. Finkbeiner II , 1978 .

[48]  L. Brickman ON THE FIELD OF VALUES OF A MATRIX , 1961 .

[49]  H. W. Turnbull On the Equivalence of Pencils of Hermitian Forms , 1935 .

[50]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[51]  David W. Lewis,et al.  Matrix theory , 1991 .

[52]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[53]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[54]  A. I. Malʹt︠s︡ev Foundations of linear algebra , 1963 .

[55]  M. Hestenes Pairs of quadratic forms , 1968 .