Ab initio study of the absorption spectra of Agn (n=5–8) clusters

The absorption spectra of Ag5–8 have been determined in the framework of the linear response equation-of-motion coupled cluster method and related techniques employing 11-electron relativistic effective core potential. In these treatments electron correlation effects for 11 electrons per atom are included, providing an accurate description of excited states of silver clusters. The calculations of transition energies and oscillator strengths have been carried out in a large energy interval for the stable structures and for the isomeric forms higher in energy. This allowed us to investigate the influence of structural properties on the spectroscopic patterns and to determine the role of d-electrons. Inclusion of d-electrons in the correlation treatment is mandatory to obtain accurate values for transition energies, but the excitations of s-electrons are primarily responsible for the spectroscopic patterns. They are characterized by the interference phenomena known in molecular spectroscopy which lead to a s...

[1]  R. Mitrić,et al.  Ab Initio Adiabatic Dynamics Combined with Wigner Distribution Approach to Femtosecond Pump−Probe Negative Ion to Neutral to Positive Ion (NeNePo) Spectroscopy of Ag2Au, Ag4, and Au4 Clusters , 2001 .

[2]  G. Ertl,et al.  Ag8 fluorescence in argon. , 2001, Physical review letters.

[3]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[4]  T. Leisner,et al.  The influence of the anion vibrational temperature on the fs dynamics in a NeNePo experiment , 2000 .

[5]  Absorption and fluorescence spectra of Ar-matrix-isolated Ag3 clusters , 2000 .

[6]  J. Toennies,et al.  Spectroscopy of extremely cold silver clusters in helium droplets , 1999 .

[7]  J. Pittner,et al.  Structural and optical properties of small oxygen-doped- and pure-silver clusters , 1999 .

[8]  G. Ertl,et al.  Fluorescence and excitation spectra of Ag4 in an argon matrix , 1999 .

[9]  T. Leisner,et al.  The relaxation from linear to triangular Ag3 probed by femtosecond resonant two-photon ionization , 1999 .

[10]  Nauta,et al.  Nonequilibrium self-assembly of long chains of polar molecules in superfluid helium , 1999, Science.

[11]  Mirta Rodríguez,et al.  Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field , 1999 .

[12]  A. Terasaki,et al.  The optical absorption spectrum and photofragmentation processes of silver tetramer ion , 1999 .

[13]  Julius Jellinek,et al.  Theory of Atomic and Molecular Clusters , 1999 .

[14]  B. Collings,et al.  Silver Clusters and Silver Cluster/Ammonia Complexes , 1999 .

[15]  J. Pittner,et al.  Theoretical exploration of femtosecond multi-state nuclear dynamics of small clusters , 1998 .

[16]  J. Jortner,et al.  Ultrafast Dynamics of Small Clusters on the Time Scale of Nuclear Motion , 1998 .

[17]  J. Toennies,et al.  Superfluidity within a small helium-4 cluster: the microscopic andronikashvili experiment , 1998, Science.

[18]  Rodney J. Bartlett,et al.  A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory , 1997 .

[19]  G. Ertl,et al.  Chemiluminescence in the Agglomeration of Metal Clusters , 1996, Science.

[20]  J. Pittner,et al.  Ab initio predictions of structural and optical response properties of Na+n clusters: Interpretation of depletion spectra at low temperature , 1996 .

[21]  Schmitt,et al.  Temperature Dependence of the Optical Response of Small, Open Shell Sodium Clusters. , 1995, Physical review letters.

[22]  Schreiber,et al.  Spectroscopy of size-selected neutral clusters: Femtosecond evolution of neutral silver trimers. , 1995, Physical review letters.

[23]  Gerd Ganteför,et al.  Electronic shells or molecular orbitals: Photoelectron spectra of Ag−n clusters , 1995 .

[24]  B. Collings,et al.  Optical spectroscopy of Ag7, Ag9+, and Ag9. A test of the photodepletion method , 1994 .

[25]  Jiří Pittner,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small anionic Agn clusters: Predictions and interpretation of photodetachment spectra , 1994 .

[26]  J. Pittner,et al.  Ab initio predictions of optically allowed transitions in Na20. Nature of excitations and influence of geometry , 1993 .

[27]  J. Koutecký,et al.  Effective core potential‐configuration interaction study of electronic structure and geometry of small neutral and cationic Agn clusters: Predictions and interpretation of measured properties , 1993 .

[28]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[29]  Fedrigo,et al.  Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. , 1993, Physical review. B, Condensed matter.

[30]  J. Buttet,et al.  The optical absorption spectra of small silver clusters (n=5–11) embedded in argon matrices , 1992 .

[31]  W. Schulze,et al.  Electron impact ionization of silver clusters Agn,n≦36 , 1992 .

[32]  J. Pittner,et al.  Quantum molecular interpretation of the absorption spectra of Na5, Na6, and Na7 clusters , 1992 .

[33]  M. Kappes,et al.  Photodepletion probes of Na5, Na6, and Na7. Molecular dimensionality transition (2D→3D)? , 1992 .

[34]  M. Kappes,et al.  Electronic and geometric structure in silver clusters , 1992 .

[35]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[36]  Piercarlo Fantucci,et al.  Quantum Chemistry of Small Clusters of Elements of Groups Ia, Ib, and IIa: Fundamental Concepts, Predictions, and Interpretation of Experiments , 1991 .

[37]  Joe Ho,et al.  Photoelectron spectroscopy of metal cluster anions : Cu−n, Ag−n, and Au−n , 1990 .

[38]  C. R. Chris Wang,et al.  Optical absorption spectroscopy of sodium clusters as measured by collinear molecular beam photodepletion , 1990 .

[39]  J. Koutecký,et al.  Interpretation of the absorption spectrum of Na8 , 1990 .

[40]  M. Mostafavi,et al.  Size-dependent thermodynamic properties of silver aggregates. Simulation of the photographic development process , 1989 .

[41]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[42]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[43]  Wöste,et al.  Latent-image generation by deposition of monodisperse silver clusters. , 1985, Physical review letters.