Mesoscale structural gradients in human tooth enamel

Significance Dental enamel is integral to the function of human teeth, and its lifelong robustness is critical to well-being. An accurate multiscale model of enamel is vital in many human health contexts, including tooth decay, enamel development and malformation, and restorative dentistry. Submicrometer resolution, synchrotron X-ray microdiffraction shows that crystallographic parameters differ across the intricate rod/interrod microstructure, connecting variations in nanoscale crystallite properties with the mesoscale organization of enamel. Variation of lattice parameters strongly suggests analogous compositional variation. While rod and interrod enamel consistently differ within samples, interindividual variation hints at additional modulating factors. These results demonstrate at least one additional level in the hierarchical architecture of human enamel, with implications for mechanisms governing its formation, functional performance, and degradation.

[1]  J. Okasinski,et al.  Carbonated apatite lattice parameter variation across incremental growth lines in teeth , 2020 .

[2]  G. Janusas,et al.  Comparing Methods for Calculating Nano Crystal Size of Natural Hydroxyapatite Using X-Ray Diffraction , 2020, Nanomaterials.

[3]  S. Stock,et al.  A method for mapping submicron-scale crystallographic order/disorder applied to human tooth enamel , 2020, Powder Diffraction.

[4]  Prasanna V. Balachandran,et al.  Chemical Gradients in Human Enamel Crystallites. , 2020, Nature.

[5]  M. Buehler,et al.  The hidden structure of human enamel , 2019, Nature Communications.

[6]  John M. Hughes,et al.  Structural variations along the apatite F-OH join , 2018, American Mineralogist.

[7]  M. Al-Jawad,et al.  Crystallographic texture and mineral concentration quantification of developing and mature human incisal enamel , 2018, Scientific Reports.

[8]  L. Costello,et al.  The Important Role and Implications of Citrate in the Composition, Structure, and Function of Oral/Periodontal/Craniofacial Tissues , 2018, Madridge journal of dentistry and oral surgery.

[9]  J. Bembenek,et al.  Enamel. , 2018, University of Toronto undergraduate dental journal.

[10]  G. Genin,et al.  Protein-free formation of bone-like apatite: New insights into the key role of carbonation. , 2017, Biomaterials.

[11]  P. Fratzl,et al.  Water-Mediated Collagen and Mineral Nanoparticle Interactions Guide Functional Deformation of Human Tooth Dentin , 2016 .

[12]  D. Joester,et al.  Mapping residual organics and carbonate at grain boundaries and the amorphous interphase in mouse incisor enamel , 2015, Front. Physiol..

[13]  K. Macrenaris,et al.  Amorphous intergranular phases control the properties of rodent tooth enamel , 2015, Science.

[14]  M. Al-Jawad,et al.  Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction. , 2013, Archives of oral biology.

[15]  M. Swain,et al.  X‐ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel , 2013, Journal of microscopy.

[16]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[17]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[18]  M. Miller,et al.  Far-field high-energy diffraction microscopy: a tool for intergranular orientation and strain analysis , 2011 .

[19]  U. Lienert,et al.  Synchrotron applications of an amorphous silicon flat-panel detector. , 2008, Journal of synchrotron radiation.

[20]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[21]  N. Adir,et al.  Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules. , 2006, Journal of structural biology.

[22]  J. Quintana,et al.  Anisotropic lattice distortions in biogenic aragonite , 2004, Nature materials.

[23]  G. Ross Phosphates: Geochemical, Geobiological and Materials Importance , 2004 .

[24]  Y. Miake,et al.  High-resolution electron microscopy of enamel-crystal demineralization and remineralization in carious lesions. , 2003, Journal of electron microscopy.

[25]  Antonio Nanci,et al.  Ten Cate's Oral Histology: Development, Structure, and Function , 2003 .

[26]  J.C. Elliott,et al.  Rietveld refinement of the crystallographic structure of human dental enamel apatites , 1999 .

[27]  S. Lyngstadaas,et al.  Crown morphology, enamel distribution, and enamel structure in mouse molars , 1998, The Anatomical record.

[28]  Jerome B. Hastings,et al.  Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 , 1987 .

[29]  G. Daculsi,et al.  Length and shape of enamel crystals , 1984, Calcified Tissue International.

[30]  A. Thylstrup,et al.  The development of enamel structure in rat incisors as compared to the teeth of monkey and man , 1981, The Anatomical record.

[31]  B Kerebel,et al.  Ultrastructural Studies of Enamel Crystallites , 1979, Journal of dental research.

[32]  G. Daculsi,et al.  High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. , 1978, Journal of ultrastructure research.

[33]  J. Langford,et al.  Scherrer after sixty years: a survey and some new results in the determination of crystallite size , 1978 .

[34]  R. Neal,et al.  Structure of mature human dental enamel as observed by electron microscopy. , 1965, Archives of oral biology.

[35]  D F POOLE,et al.  The arrangement of crystallites in enamel prisms. , 1961, Archives of oral biology.

[36]  Jinhui Tao,et al.  Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. , 2016, Biomaterials.

[37]  S R Wood,et al.  The chemistry of enamel caries. , 2000, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[38]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[39]  W. E. Brown,et al.  Structures of Biological Minerals , 1982 .