Identification of nonlinear dynamics using a general spatio-temporal network

[1]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[2]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[3]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[4]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[5]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[6]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  S. A. Billings,et al.  Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems , 1983 .

[8]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[10]  Robert J. Marks,et al.  An Artificial Neural Network for Spatio-Temporal Bipolar Patterns: Application to Phoneme Classification , 1987, NIPS.

[11]  Fernando J. Pineda,et al.  Generalization of Back propagation to Recurrent and Higher Order Neural Networks , 1987, NIPS.

[12]  Fernando J. Pineda,et al.  Dynamics and architecture for neural computation , 1988, J. Complex..

[13]  Barak A. Pearlmutter Learning state space trajectories in recurrent neural networks : a preliminary report. , 1988 .

[14]  Barak A. Pearlmutter Learning State Space Trajectories in Recurrent Neural Networks , 1989, Neural Computation.

[15]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[16]  Fernando J. Pineda,et al.  Time Dependent Adaptive Neural Networks , 1989, NIPS.

[17]  Luis B. Almeida Back propagation in non-feedforward networks , 1989 .

[18]  Igor Aleksander,et al.  Neural computing architectures: the design of brain-like machines , 1989 .

[19]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[20]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[21]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[22]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[23]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[24]  Jing Peng,et al.  An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories , 1990, Neural Computation.

[25]  Jacob Barhen,et al.  Adjoint-Functions and Temporal Learning Algorithms in Neural Networks , 1990, NIPS.

[26]  Stephen A. Billings,et al.  Non-linear system identification using neural networks , 1990 .

[27]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[28]  Sheng Chen,et al.  Practical identification of NARMAX models using radial basis functions , 1990 .

[29]  L. B. Almeida A learning rule for asynchronous perceptrons with feedback in a combinatorial environment , 1990 .

[30]  Sheng Chen,et al.  Parallel recursive prediction error algorithm for training layered neural networks , 1990 .

[31]  N. Z. Hakim,et al.  A discrete-time neural network model for systems identification , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[32]  Barak A. Pearlmutter Dynamic recurrent neural networks , 1990 .

[33]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[34]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[35]  Eric A. Wan,et al.  Temporal backpropagation for FIR neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[36]  Kil To Chong,et al.  Recurrent multilayer perceptron for nonlinear system identification , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[37]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[38]  Kumpati S. Narendra,et al.  Gradient methods for the optimization of dynamical systems containing neural networks , 1991, IEEE Trans. Neural Networks.

[39]  Ah Chung Tsoi,et al.  FIR and IIR Synapses, a New Neural Network Architecture for Time Series Modeling , 1991, Neural Computation.

[40]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[41]  S Z Qin,et al.  Comparison of four neural net learning methods for dynamic system identification , 1992, IEEE Trans. Neural Networks.

[42]  Robert O. Shelton,et al.  A space-time neural network , 1992, Int. J. Approx. Reason..