Second-Order Isomorphic Types

This chapter is dedicated to the proof of completeness of Th2 xT for iso­morphisms in λ2 βηπ✻. This proof is by far the most complex present in this book, because in the second-order case we have to face the problem of invertibility of terms almost anew, and we can no longer avoid it as we did for the first-order systems.

[1]  Roberto Di Cosmo,et al.  Simulating expansions without expansions , 1994, Mathematical Structures in Computer Science.

[2]  Angus Macintyre,et al.  The laws of exponentiation , 1981 .

[3]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[4]  Pierre Lescanne REVE: A Rewrite Rule Laboratory , 1987, STACS.

[5]  C. Ward Henson,et al.  Correction to: “Some applications of Nevanlinna theory to mathematical logic: identities of exponential functions” [Trans. Amer. Math. Soc. 282 (1984), no. 1, 1–32; MR0728700 (85h:03015)] , 1986 .

[6]  Leon Henkin,et al.  The Logic of Equality , 1977 .

[7]  Alfred Tarski,et al.  An extended arithmetic of ordinal numbers , 1969 .

[8]  Kim B. Bruce,et al.  Provable isomorphisms and domain equations in models of typed languages , 1985, STOC '85.

[9]  Mikael Rittri,et al.  Retrieving Library Identifiers via Equational Matching of Types , 1990, CADE.

[10]  S. Solov′ev The category of finite sets and Cartesian closed categories , 1983 .

[11]  Luca Cardelli,et al.  An Extension of System F with Subtyping , 1991, TACS.

[12]  Martín Abadi,et al.  Formal parametric polymorphism , 1993, POPL '93.

[13]  Colin Runciman,et al.  Retrieving re-usable software components by polymorphic type , 1989, Journal of Functional Programming.

[14]  Roberto Di Cosmo,et al.  A Confluent Reduction for the lambda-Calculus with Surjective Pairing and Terminal Object , 1996, J. Funct. Program..

[15]  Richard Morgan Component library retrieval using property models , 1991 .

[16]  R. Gurevič Equational theory of positive numbers with exponentiation , 1985 .

[17]  G. Mints,et al.  Closed categories and the theory of proofs , 1981 .

[18]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[19]  R. Gurevic Equational Theory of Positive Numbers with Exponentiation is Not Finitely Axiomatizable , 1990, Ann. Pure Appl. Log..

[20]  Roberto Di Cosmo,et al.  Provable isomorphisms of types , 1992, Mathematical Structures in Computer Science.

[21]  Roberto Di Cosmo,et al.  Deciding type isomorphisms in a type-assignment framework , 1993, Journal of Functional Programming.

[22]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[23]  Pierre Lescanne,et al.  Computer experiments with the REVE term rewriting system generator , 1983, POPL '83.

[24]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[25]  Mikael Rittri,et al.  Using types as search keys in function libraries , 1989, Journal of Functional Programming.

[26]  Richard Statman,et al.  λ-definable functionals andβη conversion , 1983, Arch. Math. Log..

[27]  Roberto Di Cosmo,et al.  Type isomorphisms in a type-assignment framework , 1992, POPL '92.

[28]  Fabio Alessi,et al.  Strong Conjunction and Intersection Types , 1991, MFCS.