Stimulation of monovalent cation fluxes by electron donors in the human red cell membrane.

[1]  R. Macey,et al.  Erythrocyte membrane potentials determined by hydrogen ion distribution. , 1978, Biochimica et biophysica acta.

[2]  F. L. Crane,et al.  Redox function in plasma membranes. , 1978, Biochimica et biophysica acta.

[3]  P. Romero Is the Ca2+-sensitive K+ channel under metabolic control in human red cells? , 1978, Biochimica et biophysica acta.

[4]  F. L. Crane,et al.  NADH oxidation in liver and fat cell plasma membranes , 1976, FEBS letters.

[5]  H. G. Ferreira,et al.  Variable Ca sensitivity of a K-selective channel in intact red-cell membranes , 1976, Nature.

[6]  S. Werner,et al.  Effects of reducing and oxidizing agents on the adenylate cyclase activity in adipocyte plasma membranes , 1976, FEBS letters.

[7]  T. Tiffert,et al.  Ionized calcium concentrations in squid axons , 1976, The Journal of general physiology.

[8]  D Bertrand,et al.  Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L) , 1976, The Journal of general physiology.

[9]  T. Simons The preparation of human red cell ghosts containing calcium buffers. , 1976, The Journal of physiology.

[10]  T. Simons Calcium‐dependent potassium exchange in human red cell ghosts. , 1976, The Journal of physiology.

[11]  B. Herreros,et al.  Characterization of transport systems for the transfer of 3,4-L-dihydroxyphenylalanine into slices of rat cerebral cortex. , 1975, Biochimica et biophysica acta.

[12]  H. Kimelberg ACTIVE POTASSIUM TRANSPORT AND [Na++ K+]ATPase ACTIVITY IN CULTURED GLIOMA AND NEUROBLASTOMA CELLS , 1974, Journal of neurochemistry.

[13]  L. Messineo,et al.  Sensitive spectrophotometric determination of fructose, sucrose, and inulin without interference from aldohexoses, aldopentoses, and ketopentoses , 1972 .

[14]  F. Kregenow,et al.  Some Kinetic and Metabolic Characteristics of Calcium-Induced Potassium Transport in Human Red Cells , 1972, The Journal of general physiology.

[15]  J. Hoffman,et al.  Ca-induced K transport in human red cells: localization of the Ca-sensitive site to the inside of the membrane. , 1972, Biochemical and biophysical research communications.

[16]  I. Glynn,et al.  Nature of the calcium dependent potassium leak induced by (+)‐propranolol, and its possible relevance to the drug's antiarrhythmic effect , 1972, British journal of pharmacology.

[17]  O. Ortiz,et al.  Sodium and rubidium fluxes in rat red blood cells , 1971, The Journal of physiology.

[18]  P. Romero,et al.  The control by internal calcium of membrane permeability to sodium and potassium , 1971, The Journal of physiology.

[19]  M. Canessa-Fischer,et al.  The relation between membrane structure and NADH: (acceptor) oxidoreductase activity of erythrocyte ghosts. , 1969, Archives of biochemistry and biophysics.

[20]  L. Welt,et al.  The concentration dependence of active potassium transport in the human red blood cell. , 1967, The Journal of clinical investigation.

[21]  M. Canessa,et al.  Nicotinamide-adenine dinucleotide dehydrogenase activity of human erythrocyte membranes. , 1966, Biochimica et biophysica acta.

[22]  M. Maizels,et al.  Cation exchanges of lactose‐treated human red cells , 1962, The Journal of physiology.