Insights into the Microbial Degradation of Rubber and Gutta-Percha by Analysis of the Complete Genome of Nocardia nova SH22a

ABSTRACT The complete genome sequence of Nocardia nova SH22a was determined in light of the remarkable ability of rubber and gutta-percha (GP) degradation of this strain. The genome consists of a circular chromosome of 8,348,532 bp with a G+C content of 67.77% and 7,583 predicted protein-encoding genes. Functions were assigned to 72.45% of the coding sequences. Among them, a large number of genes probably involved in the metabolism of xenobiotics and hardly degradable compounds, as well as genes that participate in the synthesis of polyketide- and/or nonribosomal peptide-type secondary metabolites, were detected. Based on in silico analyses and experimental studies, such as transposon mutagenesis and directed gene deletion studies, the pathways of rubber and GP degradation were proposed and the relationship between both pathways was unraveled. The genes involved include, inter alia, genes participating in cell envelope synthesis (long-chain-fatty-acid–AMP ligase and arabinofuranosyltransferase), β-oxidation (α-methylacyl-coenzyme A [α-methylacyl-CoA] racemase), propionate catabolism (acyl-CoA carboxylase), gluconeogenesis (phosphoenolpyruvate carboxykinase), and transmembrane substrate uptake (Mce [mammalian cell entry] transporter). This study not only improves our insights into the mechanism of microbial degradation of rubber and GP but also expands our knowledge of the genus Nocardia regarding metabolic diversity.

[1]  Jason T. Huff,et al.  Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis. , 2014, Tuberculosis.

[2]  Quan Luo,et al.  Functional diversity of Nocardia in metabolism. , 2014, Environmental microbiology.

[3]  D. Jendrossek,et al.  Functional Identification of Rubber Oxygenase (RoxA) in Soil and Marine Myxobacteria , 2013, Applied and Environmental Microbiology.

[4]  J. Ocampo-Candiani,et al.  Complete Genome Sequence Analysis of Nocardia brasiliensis HUJEG-1 Reveals a Saprobic Lifestyle and the Genes Needed for Human Pathogenesis , 2013, PloS one.

[5]  V. Barbe,et al.  The Nocardia cyriacigeorgica GUH-2 genome shows ongoing adaptation of an environmental Actinobacteria to a pathogen’s lifestyle , 2013, BMC Genomics.

[6]  Quan Luo,et al.  Microbial Gutta-Percha Degradation Shares Common Steps with Rubber Degradation by Nocardia nova SH22a , 2012, Applied and Environmental Microbiology.

[7]  H. Schreier,et al.  Transposon Mutagenesis of Planctomyces limnophilus and Analysis of a pckA Mutant , 2012, Applied and Environmental Microbiology.

[8]  V. Barbe,et al.  Genome Sequence of the Human- and Animal-Pathogenic Strain Nocardia cyriacigeorgica GUH-2 , 2012, Journal of bacteriology.

[9]  J. Hyeon,et al.  GntR-Type Transcriptional Regulator PckR Negatively Regulates the Expression of Phosphoenolpyruvate Carboxykinase in Corynebacterium glutamicum , 2012, Journal of bacteriology.

[10]  R. Daniel,et al.  Involvement of Two Latex-Clearing Proteins during Rubber Degradation and Insights into the Subsequent Degradation Pathway Revealed by the Genome Sequence of Gordonia polyisoprenivorans Strain VH2 , 2012, Applied and Environmental Microbiology.

[11]  A. Oguchi,et al.  Genome-wide survey of polyketide synthase and nonribosomal peptide synthetase gene clusters in Streptomyces turgidiscabies NBRC 16081. , 2012, The Journal of general and applied microbiology.

[12]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[13]  Z. Shao,et al.  Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3 , 2012, Applied Microbiology and Biotechnology.

[14]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[15]  J. Grooten,et al.  Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern , 2011, European journal of immunology.

[16]  Y. Igarashi,et al.  Identification of Nocobactin NA Biosynthetic Gene Clusters in Nocardia farcinica , 2010, Journal of bacteriology.

[17]  Luca Lo Piccolo,et al.  Involvement of an Alkane Hydroxylase System of Gordonia sp. Strain SoCg in Degradation of Solid n-Alkanes , 2010, Applied and Environmental Microbiology.

[18]  B. Pfeifer,et al.  Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host. , 2010, Chemistry & biology.

[19]  Susan C. Awe,et al.  Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil‐polluted sand samples collected in the Saudi Arabian Desert , 2010, Journal of basic microbiology.

[20]  Sabine Ehrt,et al.  Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection , 2010, Proceedings of the National Academy of Sciences.

[21]  F. Rojo Degradation of alkanes by bacteria. , 2009, Environmental microbiology.

[22]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[23]  Jianqi Yang,et al.  What Is the Metabolic Role of Phosphoenolpyruvate Carboxykinase?* , 2009, The Journal of Biological Chemistry.

[24]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[25]  L. Dijkhuizen,et al.  The Actinobacterial mce4 Locus Encodes a Steroid Transporter* , 2008, Journal of Biological Chemistry.

[26]  A. Steinbüchel,et al.  Cloning and Characterization of α-Methylacyl Coenzyme A Racemase from Gordonia polyisoprenivorans VH2 , 2008, Applied and Environmental Microbiology.

[27]  Masaaki Morikawa,et al.  Identification of alkane hydroxylase genes in Rhodococcus sp. strain TMP2 that degrades a branched alkane , 2008, Biotechnology Letters.

[28]  A. Steinbüchel,et al.  The Genomes of the Non-Clearing-Zone-Forming and Natural-Rubber- Degrading Species Gordonia polyisoprenivorans and Gordonia westfalica Harbor Genes Expressing Lcp Activity in Streptomyces Strains , 2008, Applied and Environmental Microbiology.

[29]  Z. Rao,et al.  Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. , 2008, Journal of molecular biology.

[30]  G. Besra,et al.  Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis* , 2007, Journal of Biological Chemistry.

[31]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[32]  A. Wentzel,et al.  Identification of Novel Genes Involved in Long-Chain n-Alkane Degradation by Acinetobacter sp . Strain DSM 17874 , 2007 .

[33]  D. Mohanty,et al.  Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. , 2007, Natural product reports.

[34]  Lei Wang,et al.  Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir , 2007, Proceedings of the National Academy of Sciences.

[35]  Y. Uehara,et al.  Construction of a pair of practical Nocardia-Escherichia coli shuttle vectors. , 2007, Japanese journal of infectious diseases.

[36]  A. Steinbüchel,et al.  Bacterial degradation of poly(trans-1,4-isoprene) (gutta percha). , 2007, Microbiology.

[37]  E. G. Funhoff,et al.  Alkane hydroxylases involved in microbial alkane degradation , 2007, Applied Microbiology and Biotechnology.

[38]  H. D. Singh,et al.  Biodegradation of commercial linear alkyl benzenes byNocardia amarae , 1996, Journal of Biosciences.

[39]  L. Guruprasad,et al.  The Rv3799–Rv3807 gene cluster in Mycobacterium tuberculosis genome corresponds to the ‘Ancient Conserved Region’ in CMN mycolyltransferases , 2007, Evolutionary bioinformatics online.

[40]  N. Casali,et al.  A phylogenomic analysis of the Actinomycetales mce operons , 2007, BMC Genomics.

[41]  S. Fortune,et al.  Characterization of mycobacterial virulence genes through genetic interaction mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[43]  A. Steinbüchel,et al.  Identification of Poly(cis-1,4-Isoprene) Degradation Intermediates during Growth of Moderately Thermophilic Actinomycetes on Rubber and Cloning of a Functional lcp Homologue from Nocardia farcinica Strain E1 , 2006, Applied and Environmental Microbiology.

[44]  E. G. Funhoff,et al.  Cytochrome P450 Alkane Hydroxylases of the CYP153 Family Are Common in Alkane-Degrading Eubacteria Lacking Integral Membrane Alkane Hydroxylases , 2006, Applied and Environmental Microbiology.

[45]  A. Steinbüchel,et al.  Establishment of Tn5096-Based Transposon Mutagenesis in Gordonia polyisoprenivorans , 2005, Applied and Environmental Microbiology.

[46]  Søren Brunak,et al.  Prediction of twin-arginine signal peptides , 2005, BMC Bioinformatics.

[47]  M. Daffé,et al.  The Acyl-AMP Ligase FadD32 and AccD4-containing Acyl-CoA Carboxylase Are Required for the Synthesis of Mycolic Acids and Essential for Mycobacterial Growth , 2005, Journal of Biological Chemistry.

[48]  G. Besra,et al.  Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis , 2005, Clinical Microbiology Reviews.

[49]  A. Steinbüchel,et al.  Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. , 2005, Biomacromolecules.

[50]  D. Jendrossek,et al.  Novel Type of Heme-Dependent Oxygenase Catalyzes Oxidative Cleavage of Rubber (Poly-cis-1,4-Isoprene) , 2004, Applied and Environmental Microbiology.

[51]  M. Hattori,et al.  The complete genomic sequence of Nocardia farcinica IFM 10152. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Rajesh S. Gokhale,et al.  Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria , 2004, Nature.

[53]  Y. Hadar,et al.  Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber , 2004, Applied Microbiology and Biotechnology.

[54]  Tomoo Suzuki,et al.  Colonization and degradation of rubber pieces by Nocardia sp. , 1996, Biodegradation.

[55]  M. Østerås,et al.  Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype , 1991, Molecular and General Genetics MGG.

[56]  H. Schlegel,et al.  Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen , 2004, Archiv für Mikrobiologie.

[57]  C. Grimaldi,et al.  A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Rainer Merkl,et al.  YACOP: Enhanced gene prediction obtained by a combination of existing methods , 2003, Silico Biol..

[59]  R. Meckenstock,et al.  Identical Ring Cleavage Products during Anaerobic Degradation of Naphthalene, 2-Methylnaphthalene, and Tetralin Indicate a New Metabolic Pathway , 2002, Applied and Environmental Microbiology.

[60]  H Sahm,et al.  Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. , 2001, Journal of molecular microbiology and biotechnology.

[61]  F. Rojo,et al.  The Alkane Hydroxylase Gene of Burkholderia cepacia RR10 Is under Catabolite Repression Control , 2001, Journal of bacteriology.

[62]  S. Panke,et al.  Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. , 2001, Microbiology.

[63]  O. Pucci,et al.  Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. , 2001, FEMS microbiology letters.

[64]  D. Jendrossek,et al.  Bacterial degradation of natural and synthetic rubber. , 2001, Biomacromolecules.

[65]  in chief George M. Garrity Bergey’s Manual® of Systematic Bacteriology , 1989, Springer New York.

[66]  A. Steinbüchel,et al.  Microbial Degradation of the Multiply Branched Alkane 2,6,10,15,19,23-Hexamethyltetracosane (Squalane) byMycobacterium fortuitum and Mycobacterium ratisbonense , 2000, Applied and Environmental Microbiology.

[67]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[68]  B. Adhikari,et al.  Reclamation and recycling of waste rubber , 2000 .

[69]  D. Jendrossek,et al.  Physiological and Chemical Investigations into Microbial Degradation of Synthetic Poly(cis-1,4-isoprene) , 2000, Applied and Environmental Microbiology.

[70]  Hans-Curt Flemming,et al.  Biodegradation of cis-1,4-Polyisoprene Rubbers by Distinct Actinomycetes: Microbial Strategies and Detailed Surface Analysis , 2000, Applied and Environmental Microbiology.

[71]  S. Gaisser,et al.  A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea , 2000, Molecular microbiology.

[72]  H. Mooibroek,et al.  Alternative sources of natural rubber , 2000, Applied Microbiology and Biotechnology.

[73]  J. Heider,et al.  Anaerobic Toluene Catabolism of Thauera aromatica: the bbs Operon Codes for Enzymes of β Oxidation of the Intermediate Benzylsuccinate , 2000, Journal of bacteriology.

[74]  Kathryn F. Beal,et al.  The Staden package, 1998. , 2000, Methods in molecular biology.

[75]  A. Steinbüchel,et al.  Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. , 1999, International journal of systematic bacteriology.

[76]  A. Horswill,et al.  Salmonella typhimurium LT2 Catabolizes Propionate via the 2-Methylcitric Acid Cycle , 1999, Journal of bacteriology.

[77]  Thomas Wetter,et al.  Genome Sequence Assembly Using Trace Signals and Additional Sequence Information , 1999, German Conference on Bioinformatics.

[78]  C. Walsh,et al.  Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. , 1998, Chemistry & biology.

[79]  Volker F. Wendisch,et al.  Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria , 1997, Archives of Microbiology.

[80]  G. Besra,et al.  Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. , 1997, Science.

[81]  D. Jendrossek,et al.  Bacterial degradation of natural rubber: a privilege of actinomycetes? , 1997, FEMS microbiology letters.

[82]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[83]  H. Nikaido,et al.  Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  R. Heisey,et al.  Isolation of microorganisms able to metabolize purified natural rubber , 1995, Applied and environmental microbiology.

[85]  J. Caballero,et al.  DNA sequence and functions of the actVI region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). , 1994, The Journal of biological chemistry.

[86]  Bernd Bendinger,et al.  Physicochemical Cell Surface and Adhesive Properties of Coryneform Bacteria Related to the Presence and Chain Length of Mycolic Acids , 1993, Applied and environmental microbiology.

[87]  R. Knights,et al.  Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. , 1993, Science.

[88]  B. Sumegi,et al.  [13C]propionate oxidation in wild-type and citrate synthase mutant Escherichia coli: evidence for multiple pathways of propionate utilization. , 1993, The Biochemical journal.

[89]  D. Hopwood,et al.  Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. , 1992, The Journal of biological chemistry.

[90]  J. Yon,et al.  Precise gene fusion by PCR. , 1989, Nucleic acids research.

[91]  K. Struhl,et al.  Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience). Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. , 1988 .

[92]  K. Takeda,et al.  Microbial Degradation of Natural Rubber Vulcanizates , 1985, Applied and environmental microbiology.

[93]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[94]  P. Kolattukudy,et al.  Isolation and Characterization of Acyl Coenzyme A Carboxylases from Mycobacterium tuberculosis and Mycobacterium bovis, Which Produce Multiple Methyl-Branched Mycocerosic Acids , 1982, Journal of bacteriology.

[95]  H. Birnboim,et al.  A rapid alkaline extraction procedure for screening recombinant plasmid DNA. , 1979, Nucleic acids research.

[96]  H. Birnboim,et al.  A RAPID ALKALINE EXTRACTION PROCEDURE FOR SCREENING RECOMBINANT DNA , 1979 .

[97]  H. Reeves,et al.  Alternate pathways of metabolism of short-chain fatty acids. , 1968, Bacteriological reviews.

[98]  Martin Hampson,et al.  International Rubber Study Group , 1947, International Organization.

[99]  C. B. V. Niel,et al.  Bacterial Decomposition of the Rubber in Hevea Latex , 1936 .