Understanding quasi-ballistic transport in nano-MOSFETs: part I-scattering in the channel and in the drain

In this paper, and in Part II, Monte Carlo (MC) simulations including quantum corrections to the potential and calibrated scattering models are used to study electronic transport in bulk and double-gate silicon-on-insulator MOSFETs with L/sub G/ down to 14-nm designed according to the 2003 International Technology Roadmap for Semiconductors. Simulations with and without scattering are used to assess the influence of quasi-ballistic transport on the MOSFET on-current. We analyze in detail the flux of back-scattered carriers. The role of scattering in different parts of the device is clarified and the MC results are compared to simple models for quasi-ballistic transport presented in the literature.

[1]  C. Jacoboni,et al.  The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials , 1983 .

[2]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[3]  M. Lundstrom Fundamentals of carrier transport , 1990 .

[4]  E. Sangiorgi,et al.  A semi-empirical model of surface scattering for Monte Carlo simulation of silicon n-MOSFETs , 1992 .

[5]  C. Jungemann,et al.  Simulation of linear and nonlinear electron transport in homogeneous silicon inversion layers , 1993 .

[6]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[7]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[8]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[9]  Mark S. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2000, 2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502).

[10]  D. Vasileska,et al.  Quantum effects in MOSFETs: use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[11]  K. Hess,et al.  A full-band Monte Carlo model for silicon nanoscale devices with a quantum mechanical correction of the potential , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[12]  S. Laux,et al.  Long-range Coulomb interactions in small Si devices. Part I: Performance and reliability , 2001 .

[13]  L. Selmi,et al.  Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application , 2001 .

[14]  S. Datta,et al.  The non-equilibrium Green's function (NEGF) formalism: An elementary introduction , 2002, Digest. International Electron Devices Meeting,.

[15]  T. Numata,et al.  Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm , 2002, Digest. International Electron Devices Meeting,.

[16]  Determination of deep ultrathin equivalent oxide thickness (EOT) from measuring flat-band C-V curve , 2002 .

[17]  M. Anantram,et al.  Role of scattering in nanotransistors , 2002, cond-mat/0211069.

[18]  S. Takagi,et al.  Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs , 2002 .

[19]  M. Lundstrom,et al.  A compact scattering model for the nanoscale double-gate MOSFET , 2002 .

[20]  Wanqiang Chen,et al.  Simulation of quantum effects along the channel of ultrascaled Si-based MOSFETs , 2002 .

[21]  L. Selmi,et al.  Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs , 2003 .

[22]  Velocity distribution of electrons along the channel of nanoscale MOS transistors , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[23]  Umberto Ravaioli,et al.  A quantum correction based on Schrodinger equation applied to Monte Carlo device simulation , 2003 .

[24]  J. Autran,et al.  Two-dimensional modeling of quantum ballistic transport in ultimate double-gate SOI devices , 2003 .

[25]  David K. Ferry,et al.  Implementation of surface roughness scattering in Monte Carlo modeling of thin SOI MOSFETs using the effective potential , 2003 .

[26]  L. Selmi,et al.  Carrier quantization in SOI MOSFETs using an effective potential based Monte-Carlo tool , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[27]  L. Selmi,et al.  An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode , 2003 .

[28]  C. Jungemann,et al.  Investigation of strained Si/SiGe devices by MC simulation , 2004 .

[29]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[30]  P. Dollfus,et al.  On the ballistic transport in nanometer-scaled DG MOSFETs , 2003, IEEE Transactions on Electron Devices.

[31]  A Monte-Carlo study of the role of scattering in deca-nanometer MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[32]  L. Selmi,et al.  Enhanced ballisticity in nano-MOSFETs along the ITRS roadmap: a Monte Carlo study , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[33]  L. Selmi,et al.  Understanding quasi-ballistic transport in nano-MOSFETs: part II-Technology scaling along the ITRS , 2005, IEEE Transactions on Electron Devices.

[34]  Enrico Sangiorgi,et al.  An improved semi-classical Monte-Carlo approach for nano-scale MOSFET simulation , 2005 .