Hidden subsurface garden on own faeces – the trace fossil Tubulichnium rectum (Fischer-Ooster, 1858) from the Cretaceous-Palaeogene deep-sea sediments

Tubulichnium rectum (Fischer-Ooster, 1858) is an oblique to horizontal, unbranched, blind ending tube having margins densely lined with ellipsoidal muddy pellets. It occurs in fine sandy to muddy, siliciclastic and marly deep-sea sediments mostly from Turonian to Eocene times. It was probably produced by “worm”-like organisms, which fed on organic-rich sediment deposited seasonally or episodically on the sea floor. The faecal pellets were stored in the deep parts of the burrow within the anoxic zone beyond the depth that other burrowers usually penetrate. During periods of food shortage, the pellets were utilized as a supplementary nutrition source. Such behaviour in constructing and using a cache is interpreted as an adaptation to increased competition for food in the deep sea after the Cenomanian.

[1]  A. Uchman,et al.  The Trace Fossil Polykampton cabellae isp. nov. from the Pagliaro Formation (Paleocene), Northern Apennines, Italy: A Record of Nutritional Sediment Sequestration by a Deep Sea Invertebrate , 2018 .

[2]  F. M. Tognoli,et al.  Solving a cold case: New occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers , 2017 .

[3]  A. Uchman,et al.  Rhizocorallium hamatum (Fischer-Ooster 1858), a Zoophycos-like trace fossil from deep-sea Cretaceous-Neogene sediments , 2017 .

[4]  R. Bromley,et al.  An updated classification of animal behaviour preserved in substrates , 2016 .

[5]  R. Panchang,et al.  New Insights into Polychaete Traces and Fecal Pellets: Another Complex Ichnotaxon? , 2015, PloS one.

[6]  D. Knaust,et al.  Ichnodiversity and ichnoabundance: Revealing depositional trends in a confined turbidite system , 2014 .

[7]  A. Uchman,et al.  Deep-sea trace fossils of the Oligocene–Miocene Numidian Formation, northern Tunisia , 2014 .

[8]  L. Buatois,et al.  The ichnogenus Tubotomaculum: an enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain , 2014, Journal of Paleontology.

[9]  A. Wetzel,et al.  A muddy megaturbidite in the deep central South China Sea deposited ~ 350 yrs BP , 2013 .

[10]  D. Knaust The ichnogenus Rhizocorallium: Classification, trace makers, palaeoenvironments and evolution , 2013 .

[11]  K. Izumi Geochemical composition of faecal pellets as an indicator of deposit‐feeding strategies in the trace fossil Phymatoderma , 2013 .

[12]  B. Jørgensen,et al.  Quantifying the degradation of organic matter in marine sediments: A review and synthesis , 2013 .

[13]  Alfred Uchman,et al.  Deep-Sea Fans , 2012 .

[14]  J. Cummings,et al.  Assessing controls on the distribution of ichnotaxa in submarine fan environments, the Basque Basin, Northern Spain , 2011 .

[15]  S. Leszczyński Bioturbation structures of the Kropivnik Fucoid Marls (Campanian-lower Maastrichtian) of the Huwniki-Rybotycze area (Polish Carpathians) , 2010 .

[16]  A. Giannetti Influence of climate, sea-level changes and tectonics on ichnoassemblages distribution in a carbonate-dominated, deep-marine environment (Upper Paleocene, Zumaya section) , 2010 .

[17]  D. Knaust Balanoglossites Mägdefrau, 1932 from the middle triassic of Germany: part of a complex trace fossil probably produced by burrowing and boring polychaetes , 2008 .

[18]  A. Wetzel Recent Bioturbation In The Deep South China Sea: A Uniformitarian Ichnologic Approach , 2008 .

[19]  A. Uchman,et al.  Ichnological sites of Poland : the Holy Cross Mountains and the Carpathian Flysch : The Second International Congress on Ichnology : Cracow, Poland, August 29-September 8, 2008 : the pre-congress and post-congress field trip guidebook , 2008 .

[20]  A. Uchman Stop 11 : Słopnice : Ropianka Formation (Senonian-Palaeocene) and variegated shale (Eocene) , 2008 .

[21]  A. Uchman Stop 6 : Krościenko-Łąkcica : Szczawnica Formation (Paleocene-Lower Eocene) : ichnology of eutrophic flysch deposits , 2008 .

[22]  A. Uchman Deep-sea trace fossils from the mixed carbonate-siliciclastic flysch of the Monte Antola Formation (Late Campanian-Maastrichtian), North Apennines, Italy , 2007 .

[23]  A. Uchman,et al.  A HIGHLY DIVERSE ICHNOFAUNA IN LATE TRIASSIC DEEP-SEA FAN DEPOSITS OF OMAN , 2007 .

[24]  A. A. Ekdale The application of ichnology to palaeoenvironmental and stratigraphic analysis , 2007 .

[25]  A. Seilacher Trace Fossil Analysis , 2007 .

[26]  E. Erba The first 150 million years history of calcareous nannoplankton : biosphere-geosphere interactions , 2006 .

[27]  F. M. Tognoli,et al.  Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil , 2006 .

[28]  R. Biseswar Report on some deep-sea echiurans (Echiura) of the North-East Atlantic , 2005 .

[29]  E. Kristensen Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals , 2000, Hydrobiologia.

[30]  A. Uchman Phanerozoic history of deep-sea trace fossils , 2004, Geological Society, London, Special Publications.

[31]  A. Uchman,et al.  Deep-sea benthic food content recorded by ichnofabrics; a conceptual model based on observations from Paleogene flysch, Carpathians, Poland , 1998 .

[32]  A. Uchman Taxonomy and ethology of flysch trace fossils; revision of the Marian Ksiazkiewicz Collection and studies of complementary material , 1998 .

[33]  R. Mikuláš,et al.  Note on rediscovered type and figured material relating to Muensteria sternberg 1833 , 1996 .

[34]  R. Aller Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation☆ , 1994 .

[35]  Dmitry V. Popkov A new echiuran species Thalassema malakhovi (echiura) from New Zealand , 1992 .

[36]  A. Uchman An opportunistic trace fossil assemblage from the flysch of the Inoceramian beds (Campanian-Palaeocene), Bystrica Zone of the Magura Nappe, Carpathians, Poland , 1992 .

[37]  A. Uchman Diverse tiering patterns in Paleogene flysch trace fossils, Magura nappe, Carpathian Mountains, Poland , 1991 .

[38]  R. Bromley Zoophycos: strip mine, refuse dump, cache or sewage farm? , 1991 .

[39]  A. Uchman Trace fossils from stress environments in Cretaceous-Paleogene flysch of the Polish Outer Carpathians , 1991 .

[40]  J. Deming,et al.  Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints , 1990, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[41]  J. Kern Trails from the Vienna woods: Paleoenvironments and trace fossils of cretaceous to eocene flysch, Vienna, Austria , 1978 .

[42]  R. W. Frey,et al.  Ophiomorpha: Its morphologic, taxonomic, and environmental significance , 1978 .

[43]  Walter Häntzschel Trace fossils and problematica , 1975 .

[44]  I. Thomas ACTION OF THE GUT IN SACCOGLOSSUS OTAGOENSIS (HEMICHORDATA: ENTEROPNEUSTA) , 1972 .

[45]  D. Haven,et al.  Fecal pellets of common invertebrates of lower York River and lower Chesapeake Bay, Virginia , 1970 .

[46]  A. W. Vorzeitliche Lebensspuren , 1935, Nature.

[47]  B. Lundgren Studier öfver fossilförande lösa block , 1882 .

[48]  O. Heer Die Urwelt der Schweiz , 1879 .

[49]  K. G. Reichsanstalt Jahrbuch der kaiserlich-königlichen geologischen Reich-sanstalt, , 1872, Nature.

[50]  A. Watelet Description des plantes fossiles du bassin de Paris , 1866 .

[51]  V. Ettingshausen,et al.  Die fossilen algen des Wiener und des Karpathen-Sandsteines , 2022 .