Z-BN: a novel superhard boron nitride phase.

A superhard boron nitride phase dubbed as Z-BN is proposed as a possible intermediate phase between h-BN and zinc blende BN (c-BN), and investigated using first-principles calculations within the framework of density functional theory. Although the structure of Z-BN is similar to that of bct-BN containing four-eight BN rings, it is more energetically favorable than bct-BN. Our study reveals that Z-BN, with a considerable structural stability and high density comparable to c-BN, is a transparent insulator with an indirect band gap of about 5.27 eV. Amazingly, its Vickers hardness is 55.88 GPa which is comparable to that of c-BN. This new BN phase may be produced in experiments through cold compressing AB stacking h-BN due to its low transition pressure point of 3.3 GPa.

[1]  Yanchao Wang,et al.  Crystal structure prediction via particle-swarm optimization , 2010 .

[2]  Takashi Miyake,et al.  Body-centered tetragonal C4: a viable sp3 carbon allotrope. , 2010, Physical review letters.

[3]  Stefan Goedecker,et al.  Crystal structure prediction using the minima hopping method. , 2010, The Journal of chemical physics.

[4]  X. Zeng,et al.  Polymorphic phases of sp3-hybridized carbon under cold compression. , 2012, Journal of the American Chemical Society.

[5]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[6]  T. Miyake,et al.  Nanotube nanoscience: A molecular-dynamics study , 2005 .

[7]  R. H. Wentorf,et al.  Direct Transformation of Hexagonal Boron Nitride to Denser Forms , 1963 .

[8]  C. Pickard,et al.  Systematic prediction of crystal structures: An application to sp 3 -hybridized carbon polymorphs , 2004 .

[9]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[10]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[11]  Stefan Goedecker,et al.  Crystal Structure of Cold Compressed Graphite , 2012 .

[12]  Yang Song,et al.  Transformations of Cold-Compressed Multiwalled Boron Nitride Nanotubes Probed by Infrared Spectroscopy , 2010 .

[13]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[14]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[15]  D. Medlin,et al.  Review of advances in cubic boron nitride film synthesis , 1997 .

[16]  Yoshiyuki Kawazoe,et al.  Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon , 2011 .

[17]  S. Leoni,et al.  Superhard s p3 carbon allotropes with odd and even ring topologies , 2011, 1206.5379.

[18]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[19]  E. S. Zouboulis,et al.  Elastic constants of boron nitride , 1994 .

[20]  R. Paine,et al.  Synthetic routes to boron nitride , 1990 .

[21]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[22]  Hui-Tian Wang,et al.  Superhard F-carbon predicted by ab initio particle-swarm optimization methodology , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[24]  Yanming Ma,et al.  Phase-transition mechanism of h-BN → w-BN from first principles , 2009 .

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  New superhard carbon phases between graphite and diamond , 2012, 1203.5509.

[27]  S. Alterovitz,et al.  A Promising Boron-Carbon-Nitrogen Thin Film , 1990, Materials Science Forum.

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  Hui Wang,et al.  Superhard monoclinic polymorph of carbon. , 2009, Physical review letters.

[30]  H. Niu,et al.  Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon , 2011 .

[31]  Lizhong Sun,et al.  A DFT-LDA study of electronic and optical properties of hexagonal boron nitride under uniaxial strain , 2012 .

[32]  S. Dolan,et al.  Preparation of Amorphous Boron Nitride and Its Conversion to a Turbostratic, Tubular Form , 1993, Science.

[33]  H. Mao,et al.  The formation of sp3 bonding in compressed BN , 2004, Nature materials.

[34]  Zhiping Li,et al.  Structure, bonding, vibration and ideal strength of primitive-centered tetragonal boron nitride. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Peter J. Eng,et al.  Bonding Changes in Compressed Superhard Graphite , 2003, Science.

[36]  Yi Zhang,et al.  Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. , 2009, Physical review letters.

[37]  S. Goedecker Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. , 2004, The Journal of chemical physics.

[38]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[39]  Kuo Bao,et al.  Lowest enthalpy polymorph of cold-compressed graphite phase. , 2012, Physical chemistry chemical physics : PCCP.

[40]  Y. Bando,et al.  Octahedral boron nitride fullerenes formed by electron beam irradiation , 1998 .

[41]  Cohen,et al.  Ab initio study of graphite --> diamondlike transitions in BN. , 1988, Physical review. B, Condensed matter.

[42]  Y. Kawazoe,et al.  Orthorhombic carbon allotrope of compressed graphite: Ab initio calculations , 2012 .

[43]  R. Martoňák,et al.  Pressure-induced structural transitions in BN from ab initio metadynamics , 2011 .

[44]  Jijun Zhao,et al.  Body-centered tetragonal B2N2: a novel sp3 bonding boron nitride polymorph. , 2011, Physical chemistry chemical physics : PCCP.

[45]  Li-Min Wang,et al.  Novel superhard carbon: C-centered orthorhombic C8. , 2011, Physical review letters.

[46]  Quintin Johnson,et al.  First X-Ray Diffraction Evidence for a Phase Transition during Shock-Wave Compression , 1972 .

[47]  Artem R. Oganov,et al.  Systematic search for low-enthalpy sp3 carbon using evolutionary metadynamics , 2012, 1203.0706.

[48]  R. Baughman,et al.  A carbon phase that graphitizes at room temperature , 1997 .

[49]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[50]  Shibing Wang,et al.  Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. , 2012, Physical review letters.

[51]  J. Zhong,et al.  Four superhard carbon allotropes: a first-principles study. , 2012, Physical chemistry chemical physics : PCCP.