Control and Synchronization of Chaos in Biological Systems Via Backsteping Design

In this study, recursive and adaptive backstepping nonlinear controllers are proposed to, respec- tively , control and synchronize the biological system. The designed recursive nonlinear backstepping con- troller is capable of stabilizing the biological system at any position as well as controlling it to track any trajectory that is a smooth function of time. The designed adaptive nonlinear controller globally synchronizes two identical biological systems evolving from different initial conditions. Numerical simulations are given to validate the effectiveness of the proposed controllers and show the robustness against noise.

[1]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[2]  Jianping Yan,et al.  Generalized projective synchronization of a unified chaotic system , 2005 .

[3]  Jackson Controls of dynamic flows with attractors. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[4]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[5]  Parlitz,et al.  Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.

[6]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[7]  Chen Shi-Gang,et al.  Directing nonlinear dynamic systems to any desired orbit , 1997 .

[8]  Parlitz,et al.  Synchronization and control of coupled ginzburg-landau equations using local coupling , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  M. Yassen Chaos control of chaotic dynamical systems using backstepping design , 2006 .

[10]  Mohammad Teshnehlab,et al.  Generalized projective synchronization for chaotic systems via Gaussian Radial Basis Adaptive Backstepping Control , 2009 .

[11]  Gregory L. Baker,et al.  When Two Coupled Pendulums Equal One: a Synchronization Machine , 2003, Int. J. Bifurc. Chaos.

[12]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  Chi-Sang Poon,et al.  Decrease of cardiac chaos in congestive heart failure , 1997, Nature.

[14]  Ahmad Harb,et al.  Chaos and Bifurcation Control Using Nonlinear Recursive Controller , 2002 .

[15]  H. Fröhlich Long-range coherence and energy storage in biological systems , 1968 .

[16]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[17]  Uchechukwu E. Vincent,et al.  Control and Synchronization of Chaos in Nonlinear Gyros via Backstepping Design , 2008 .

[18]  Willi-Hans Steeb,et al.  Chaos in limit cycle systems with external periodic excitations , 1987 .

[19]  Uchechukwu E. Vincent,et al.  Global chaos synchronization of coupled parametrically excited pendula , 2009 .

[20]  M. Lakshmanan,et al.  Bifurcation and chaos in the double-well Duffing–van der Pol oscillator: Numerical and analytical studies , 1997, chao-dyn/9709013.

[21]  J. A. Laoye,et al.  Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control , 2007 .

[22]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[23]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[24]  Jackson Ea,et al.  Controls of dynamic flows with attractors. , 1991 .

[25]  Uchechukwu E. Vincent,et al.  Chaos Synchronization Using Active Control and Backstepping Control: A Comparative Analysis , 2008 .

[26]  Fr. Kaiser Coherent Oscillations in Biological Systems I , 1978 .

[27]  H. Freund Motor unit and muscle activity in voluntary motor control. , 1983, Physiological reviews.

[28]  Uchechukwu E. Vincent,et al.  Synchronization of Rikitake chaotic attractor using active control , 2005 .

[29]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[30]  O. Olusola,et al.  Synchronization, multistability and basin crisis in coupled pendula , 2010 .

[31]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Atlee Jackson,et al.  An open-plus-closed-loop (OPCL) control of complex dynamic systems , 1995 .

[33]  Uchechukwu E. Vincent,et al.  Synchronization of chaos in non-identical parametrically excited systems , 2009 .

[34]  J. B. Chabi Orou,et al.  Nonlinear dynamics and strange attractors in the biological system , 2007 .

[35]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[36]  陈士华,et al.  Synchronization of noise-perturbed generalized Lorenz system by sliding mode control , 2009 .

[37]  A. Pisarchik,et al.  Intermittent lag synchronization in a driven system of coupled oscillators , 2005 .

[38]  A. N. Njah,et al.  BACKSTEPPING CONTROL AND SYNCHRONIZATION OF PARAMETRICALLY AND EXTERNALLY EXCITED Φ6 VAN DER POL OSCILLATORS WITH APPLICATION TO SECURE COMMUNICATIONS , 2010 .

[39]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[40]  Xiaofeng Wu,et al.  Global Chaos Synchronization of the Lorenz–Stenflo Systems via Linear State Error Feedback Control , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).