Mirror symmetry for circle compactified 4d $\mathcal{N}=2$ SCFTs

We propose a mirror symmetry for 4d $\mathcal{N}=2$ superconformal field theories (SCFTs) compactified on a circle with finite size. The mirror symmetry involves vertex operator algebra (VOA) describing the Schur sector (containing Higgs branch) of 4d theory, and the Coulomb branch of the effective 3d theory. The basic feature of the mirror symmetry is that many representational properties of VOA are matched with geometric properties of the Coulomb branch moduli space. Our proposal is verified for a large class of Argyres-Douglas (AD) theories engineered from M5 branes, whose VOAs are W-algebras, and Coulomb branches are the Hitchin moduli spaces. VOA data such as simple modules, Zhu's algebra, and modular properties are matched with geometric properties like $\mathbb{C}^*$-fixed varieties in Hitchin fibers, cohomologies, and some DAHA representations. We also mention relationships to 3d symplectic duality.

[1]  Dan Xie Pseudo-periodic map and classification of theories with eight supercharges , 2023, 2304.13663.

[2]  Pablo Boixeda Alvarez,et al.  Non-abelian Hodge moduli spaces and homogeneous affine Springer fibers , 2022, 2209.14695.

[3]  Yu-Fei Wang,et al.  Surface defects, flavored modular differential equations, and modularity , 2022, Physical Review D.

[4]  Dan Xie,et al.  3d mirror for Argyres-Douglas theories , 2021, 2107.05258.

[5]  L. Rastelli,et al.  VOAs and Rank-Two Instanton SCFTs , 2019, Communications in Mathematical Physics.

[6]  Wenbin Yan,et al.  Schur sector of Argyres-Douglas theory and $W$-algebra , 2019, 1904.09094.

[7]  S. Sasa,et al.  On the correspondence between surface operators in Argyres-Douglas theories and modules of chiral algebra , 2018, Journal of High Energy Physics.

[8]  Ke Ye,et al.  3d TQFTs from Argyres–Douglas theories , 2018, Journal of Physics A: Mathematical and Theoretical.

[9]  T. Creutzig Logarithmic W-algebras and Argyres-Douglas theories at higher rank , 2018, Journal of High Energy Physics.

[10]  Y. Wang,et al.  Codimension-two defects and Argyres-Douglas theories from outer-automorphism twist in 6D (2,0) theories , 2018, Physical Review D.

[11]  Shamil Shakirov,et al.  Argyres–Douglas theories, modularity of minimal models and refined Chern–Simons , 2018, Advances in Theoretical and Mathematical Physics.

[12]  T. Arakawa REPRESENTATION THEORY OF W-ALGEBRAS AND HIGGS BRANCH CONJECTURE , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[13]  S. Yau,et al.  4d N=2 SCFT and singularity theory Part III: Rigid singularity , 2017, 1712.00464.

[14]  M. Buican,et al.  Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories. , 2017, Physical review letters.

[15]  T. Nishinaka,et al.  On the chiral algebra of Argyres-Douglas theories and S-duality , 2017, Journal of High Energy Physics.

[16]  Ke Ye,et al.  Argyres-Douglas matter and S-duality. Part II , 2017, 1711.06684.

[17]  A. Oblomkov,et al.  The cohomology ring of certain compactified Jacobians , 2017, 1710.05391.

[18]  L. Rastelli,et al.  Vertex operator algebras, Higgs branches, and modular differential equations , 2017, Journal of High Energy Physics.

[19]  Wenbin Yan,et al.  Vertex operator algebras of Argyres-Douglas theories from M5-branes , 2017, 1706.01607.

[20]  M. Buican,et al.  On irregular singularity wave functions and superconformal indices , 2017, Journal of High Energy Physics.

[21]  Clay Córdova,et al.  Surface defects and chiral algebras , 2017, 1704.01955.

[22]  Clay Córdova,et al.  Surface defect indices and 2d-4d BPS states , 2017, 1703.02525.

[23]  Ke Ye,et al.  Argyres-Douglas theories, chiral algebras and wild Hitchin characters , 2017, Journal of High Energy Physics.

[24]  T. Creutzig W-algebras for Argyres–Douglas theories , 2017, 1701.05926.

[25]  Jaewon Song Macdonald index and chiral algebra , 2016, 1612.08956.

[26]  T. Arakawa,et al.  Quasi-lisse Vertex Algebras and Modular Linear Differential Equations , 2016, 1610.05865.

[27]  Clay Córdova,et al.  Infrared computations of defect Schur indices , 2016, 1606.08429.

[28]  S. Yau,et al.  4d N=2 SCFT from Complete Intersection Singularity , 2016, 1606.06306.

[29]  S. Yau,et al.  4d N=2 SCFT and singularity theory Part II: Complete intersection , 2016, 1604.07843.

[30]  S. Yau,et al.  Chiral algebra of the Argyres-Douglas theory from M5 branes , 2016, 1604.02155.

[31]  M. Buican,et al.  Conformal manifolds in four dimensions and chiral algebras , 2016, 1603.00887.

[32]  C. Vafa,et al.  Superconformal index, BPS monodromy and chiral algebras , 2015, 1511.01516.

[33]  Jaewon Song Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT , 2015, 1509.06730.

[34]  M. Buican,et al.  Argyres-Douglas theories, the Macdonald index, and an RG inequality , 2015, 1509.05402.

[35]  Y. Wang,et al.  Classification of Argyres-Douglas theories from M5 branes , 2015, 1509.00847.

[36]  Anne Moreau,et al.  JOSEPH IDEALS AND LISSE MINIMAL $W$ -ALGEBRAS , 2015, Journal of the Institute of Mathematics of Jussieu.

[37]  M. Buican,et al.  Argyres–Douglas theories, S1 reductions, and topological symmetries , 2015, 1505.06205.

[38]  M. Buican,et al.  On the superconformal index of Argyres–Douglas theories , 2015, 1505.05884.

[39]  Tatsuyuki Hikita An algebro-geometric realization of the cohomology ring of Hilbert scheme of points in the affine plane , 2015, 1501.02430.

[40]  Madalena Lemos,et al.  Chiral algebras for trinion theories , 2014, 1411.3252.

[41]  A. Oblomkov,et al.  Geometric representations of graded and rational Cherednik algebras , 2014, 1407.5685.

[42]  L. Rastelli,et al.  Infinite Chiral Symmetry in Four Dimensions , 2013, 1312.5344.

[43]  T. Arakawa Rationality of W-algebras: principal nilpotent cases , 2012, 1211.7124.

[44]  Elaine Savory Boundaries , 2012 .

[45]  N. Proudfoot,et al.  Quantizations of conical symplectic resolutions I: local and global structure , 2012, 1208.3863.

[46]  P. Levy,et al.  Gradings of positive rank on simple Lie algebras , 2012, 1307.5765.

[47]  T. Arakawa Rationality of admissible affine vertex algebras in the category O , 2012, 1207.4857.

[48]  Ozren Perše A note on representations of some affine vertex algebras of type D , 2012, 1205.3003.

[49]  Dan Xie General Argyres-Douglas theory , 2012, 1204.2270.

[50]  J. Distler,et al.  Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories , 2012, 1203.2930.

[51]  R. S. Ward,et al.  Moduli of monopole walls and amoebas , 2012, 1202.1294.

[52]  E. Gorsky Arc spaces and DAHA representations , 2011, 1110.1674.

[53]  Yuji Tachikawa,et al.  Mirrors of 3d Sicilian theories , 2010, 1007.0992.

[54]  Sergey A. Cherkis,et al.  Instantons on Gravitons , 2010, 1007.0044.

[55]  C. Vafa,et al.  R-Twisting and 4d/2d Correspondences , 2010, 1006.3435.

[56]  T. Arakawa Associated Varieties of Modules Over Kac–Moody Algebras and C2-Cofiniteness of W-Algebras , 2010, 1004.1554.

[57]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[58]  D. Gaiotto Preprint Typeset in Jhep Style -hyper Version N = 2 Dualities , 2022 .

[59]  E. Witten,et al.  S-duality of boundary conditions in N=4 super Yang-Mills theory , 2008, 0807.3720.

[60]  N. Proudfoot,et al.  Gale duality and Koszul duality , 2008, 0806.3256.

[61]  P. Boalch Irregular connections and Kac-Moody root systems , 2008, 0806.1050.

[62]  V. Kac,et al.  On Rationality of W-algebras , 2007, 0711.2296.

[63]  E. Vasserot,et al.  Finite dimensional representations of DAHA and affine Springers fibers : the spherical case , 2007, 0705.2691.

[64]  E. Witten,et al.  Gauge Theory, Ramification, And The Geometric Langlands Program , 2006, hep-th/0612073.

[65]  V. Kac,et al.  Finite vs affine W-algebras , 2005, math-ph/0511055.

[66]  I. Cherednik Double Affine Hecke Algebras , 2005 .

[67]  V. Kac,et al.  Quantum Reduction for Affine Superalgebras , 2003, math-ph/0302015.

[68]  Pramod N. Achar,et al.  An order-reversing duality map for conjugacy classes in Lusztig's canonical quotient , 2002, math/0203082.

[69]  K. Intriligator Compactified little string theories and compact moduli spaces of vacua , 1999, hep-th/9909219.

[70]  W. Nahm On electric-magnetic duality , 1997 .

[71]  K. Intriligator,et al.  Mirror symmetry in three dimensional gauge theories , 1996, hep-th/9607207.

[72]  E. Witten,et al.  Gauge Dynamics And Compactification To Three Dimensions , 1996, hep-th/9607163.

[73]  E. Witten,et al.  Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD , 1994, hep-th/9408099.

[74]  E. Witten,et al.  Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory , 1994, hep-th/9407087.

[75]  Edward Frenkel,et al.  Characters and fusion rules forW-algebras via quantized Drinfeld-Sokolov reduction , 1992 .

[76]  Xenia de la Ossa,et al.  A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory , 1991 .

[77]  B. Greene,et al.  Duality in {Calabi-Yau} Moduli Space , 1990 .

[78]  V. Kac,et al.  Modular and conformal invariance constraints in representation theory of affine algebras , 1988 .

[79]  V. Kac,et al.  Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Kazhdan,et al.  Fixed point varieties on affine flag manifolds , 1988 .

[81]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[82]  Justine Fasquel Rationality of the Exceptional W -Algebras W k ( sp 4 , f subreg ) Associated with Subregular Nilpotent Elements of sp 4 , 2022 .

[83]  E. Shuryak Monopoles , 2021, Nonperturbative Topological Phenomena in QCD and Related Theories.

[84]  T. Arakawa CHIRAL ALGEBRAS OF CLASS S AND MOORE-TACHIKAWA SYMPLECTIC VARIETIES , 2018 .

[85]  M. Buican,et al.  N = 2 S -duality revisited , 2017 .

[86]  Tamás Hausel,et al.  Mixed Hodge polynomials of character varieties With an appendix by , 2008 .

[87]  Roger W. Carter,et al.  Lie Algebras of Finite and Affine Type , 2005 .

[88]  L. Raifeartaigh W-Algebras , 1997 .

[89]  Xiaoping Xu On vertex operator algebras , 1996 .

[90]  R. Bezrukavnikov The dimension of the fixed point set on affine flag manifolds , 1996 .

[91]  Yongchang Zhu,et al.  Modular invariance of characters of vertex operator algebras , 1995 .

[92]  W. Mcgovern Nilpotent Orbits In Semisimple Lie Algebra : An Introduction , 1993 .

[93]  E. Cartan Groupes de Lie , 1952 .